34 research outputs found

    Mongolia Gerbils Are Broadly Susceptible to Hepatitis E Virus

    No full text
    Although cell culture systems for hepatitis E virus (HEV) have been established by using cell lines such as PLC/PRF/5 and A549, small-animal models for this virus are limited. Since Mongolia gerbils are susceptible to genotype 1, 3 and 4 HEV (HEV-1, HEV-3 and HEV4), we intraperitoneally inoculated Mongolia gerbils with HEV-5, HEV-7, HEV-8, rabbit HEV or rat HEV in addition to the above three genotypes to investigate the infectivity and to assess whether Mongolia gerbil is an appropriate animal model for HEV infection. The results indicated that (i) HEV-5 and rat HEV were effectively replicated in the Mongolia gerbils in the same manner as HEV-4: large amounts of the viral RNA were detected in the feces and livers, and high titers of the serum anti-HEV IgG antibodies were induced in all animals. The feces were shown to contain HEV that is infectious to naïve gerbils. Furthermore, HEV-4, HEV-5 and rat HEV were successfully transmitted to the gerbils by oral inoculation. (ii) Although the viral RNA and serum anti-HEV IgG antibodies were detected in all animals inoculated with HEV-1 and HEV-8, both titers were low. The viral RNA was detected in the feces collected from two of three HEV-3-inoculated, and one of three HEV-7-inoculated gerbils, but the titers were low. The serum antibody titers were also low. The viruses excreted into the feces of HEV-1-, HEV-3-, HEV-7- and HEV-8-inoculated gerbils failed to infect naïve Mongolia gerbils. (iii) No infection sign was observed in the rabbit HEV-inoculated gerbils. These results demonstrated that Mongolia gerbils are broadly susceptible to HEV, and their degree of sensitivity was dependent on the genotype. Mongolia gerbils were observed to be susceptible to not only HEVs belonging to HEV-A but also to rat HEV belonging to HEV-C1, and thus Mongolia gerbil could be useful as a small-animal model for cross-protection experiments between HEV-A and HEV-C1. Mongolia gerbils may also be useful for the evaluation of the efficacy of vaccines against HEV

    A Cross-Species Transmission of a Camel-Derived Genotype 8 Hepatitis E Virus to Rabbits

    No full text
    Novel genotypes of hepatitis E virus (HEV), i.e., HEV-5, HEV-7, and HEV-8, have been identified in wild boar, dromedary camels, and Bactrian camels, respectively, and they transmit to cynomolgus monkeys in a trans-species manner, raising the potential for zoonotic infection. Rabbits are the natural reservoir for rabbit HEV, but they are also susceptible to HEV-3 and HEV-4. It has been unknown whether rabbits are susceptible to HEV-5, HEV-7, and HEV-8. To investigate the infectivity of novel HEVs in rabbits and to assess whether rabbits are appropriate animal models for these HEVs, we inoculated Japanese white rabbits with HEV-5, HEV-7, and HEV-8, respectively. We observed that viral RNA was present in the fecal specimens of the HEV-8-inoculated rabbits and anti-HEV IgG antibodies were present in its sera, although anti-HEV IgM was undetectable and no significant elevation of ALT was observed. These results indicated that HEV-8 crossed species and infected the rabbits. No evidence for replication was observed in HEV-5 and HEV-7, suggesting that rabbits are not susceptible to these genotypes. The antibodies elicited in the HEV-8-infected rabbits did not protect them from the rabbit HEV challenge, suggesting that the antigenicity differs between HEV-8 and rabbit HEV. Antigenic analyses demonstrated that anti-HEV-8 antibodies reacted more strongly with homologous HEV-8 virus-like particles (VLPs) compared to heterologous rabbit HEV VLPs, but anti-rabbit HEV antibody had similar reactivity to the VLPs of rabbit HEV and HEV-8, suggesting that HEV-8 lacks some epitope(s) that exist in rabbit HEV and induced the neutralizing antibodies against rabbit HEV

    Cytokine production by spleen cells from mice with ovalbumin-specific, IgE-selective unresponsiveness induced by ovalbumin-liposome conjugate

    Get PDF
    Ovalbumin coupled with liposomes (OVA–liposome) induced selective unresponsiveness of anti-OVA IgE antibody production in BALB/c mice, whereas OVA adsorbed with aluminum hydroxide (OVA–alum) induced a substantial amount of anti-OVA IgE antibody production. Ovalbumin–liposome and OVA–alum predominantly induced IgG2a and IgG1 anti-OVA production, respectively. These results suggest that OVA–liposome and OVA–alum induce type 1 and type 2 T helper (Th) immune responses, respectively. To further investigate this issue, we examined the cytokine production induced by these two distinct adjuvants. Spleen cells taken from mice immunized with either OVA–liposome or OVA–alum were cultured in vitro with OVA and the cytokine production from each culture was analyzed. It was demonstrated that spleen cells from mice immunized with OVA–liposome produced more interferon (IFN)-γ than those immunized with OVA–alum and, furthermore, interleukin (IL)-4 was produced only by spleen cells from mice immunized with OVA–alum. These results favor the notion that OVA–liposome and OVA–alum induce Th1 and Th2 cytokines, respectively. Interestingly, the production of IL-2, a Th1 cytokine, was higher in the OVA–alum-immunized group and the production of IL-10, a Th2 cytokine, remained at low levels in both groups after primary immunization; levels of IL-10 increased in the OVA–liposome-immunized group after secondary immunization. These results do not agree with the above notion and, thus, suggest that it may be important to consider the balance between IFN-γ-producing cells and IL-4-producing cells rather than that between Th1 and Th2 cells for the regulation of IgE antibody production

    Low Replication Efficiency of a Japanese Rabbit Hepatitis E Virus Strain in the Human Hepatocarcinoma Cell Line PLC/PRF/5

    No full text
    A Japanese rabbit hepatitis E virus (HEV) strain, JP-59, has been identified in a feral rabbit. When this virus was transmitted to a Japanese white rabbit, it caused persistent HEV infection. The JP-59 strain shares an 7 copies/mL of the viral RNA and using it to infect a human hepatocarcinoma cell line, PLC/PRF/5. No sign of virus replication was observed. Although long-term virus replication was observed in PLC/PRF/5 cells inoculated with the concentrated and purified JP-59 containing a high titer of viral RNA (5.1 × 108 copies/mL), the viral RNA of JP-59c that was recovered from the cell culture supernatants was 4 copies/mL during the experiment. The JP-59c strain did not infect PLC/PRF/5 cells, but its intravenous inoculation caused persistent infection in rabbits. The nucleotide sequence analyses of the virus genomes demonstrated that a total of 18 nucleotide changes accompanying three amino acid mutations occurred in the strain JP-59c compared to the original strain JP-59. These results indicate that a high viral RNA titer was required for JP-59 to infect PLC/PRF/5 cells, but its replication capability was extremely low. In addition, the ability of rabbit HEVs to multiply in PLC/PRF/5 cells varied depending on the rabbit HEV strains. The investigations of cell lines that are broadly susceptible to rabbit HEV and that allow the efficient propagation of the virus are thus needed

    An Attenuated Strain of Enterovirus 71 Belonging to Genotype A Showed a Broad Spectrum of Antigenicity with Attenuated Neurovirulence in Cynomolgus Monkeysâ–¿

    No full text
    Enterovirus 71 (EV71) is a causative agent of hand, foot, and mouth disease and is also sometimes associated with serious neurological disorders. In this study, we characterized the antigenicity and tissue specificity of an attenuated strain of EV71 [EV71(S1-3′)], which belongs to genotype A, in a monkey infection model. Three cynomolgus monkeys were inoculated with EV71(S1-3′), followed by lethal challenge with the parental virulent strain EV71(BrCr-TR) via an intravenous route on day 45 postinoculation of EV71(S1-3′). Monkeys inoculated with EV71(S1-3′) showed a mild neurological symptom (tremor) but survived lethal challenge by virulent EV71(BrCr-TR) without exacerbation of the symptom. The immunized monkey sera showed a broad spectrum of neutralizing activity against different genotypes of EV71, including genotypes A, B1, B4, C2, and C4. For the strains examined, the sera showed the highest neutralization activity against the homotype (genotype A) and the lowest neutralization activity against genotype C2. The order of decreasing neutralization activity of sera was as follows: A > B1 > C4 > B4 > C2. To examine the tissue specificity of EV71(S1-3′), two monkeys were intravenously inoculated with EV71(S1-3′), followed by examination of virus distribution in the central nervous system (CNS) and extraneural tissues. In the CNS, EV71(S1-3′) was isolated only from the spinal cord. These results indicate that EV71(S1-3′) acts as an effective antigen, although this attenuated strain was still neurotropic when inoculated via the intravenous route

    Characterization of Full Genome of Rat Hepatitis E Virus Strain from Vietnam

    Get PDF
    We amplified the complete genome of the rat hepatitis E virus (HEV) Vietnam strain (V-105) and analyzed the nucleotide and amino acid sequences. The entire genome of V-105 shared only 76.8%–76.9% nucleotide sequence identities with rat HEV strains from Germany, which suggests that V-105 is a new genotype of rat HEV

    Stringent Requirement for the C Protein of Wild-Type Measles Virus for Growth both In Vitro and in Macaques

    No full text
    The P gene of measles virus (MV) encodes the P protein and three accessory proteins (C, V, and R). However, the role of these accessory proteins in the natural course of MV infection remains unclear. For this study, we generated a recombinant wild-type MV lacking the C protein, called wtMV(C−), by using a reverse genetics system (M. Takeda, K. Takeuchi, N. Miyajima, F. Kobune, Y. Ami, N. Nagata, Y. Suzaki, Y. Nagai, and M. Tashiro, J. Virol. 74:6643-6647). When 293 cells expressing the MV receptor SLAM (293/hSLAM) were infected with wtMV(C−) or parental wild-type MV (wtMV), the growth of wtMV(C−) was restricted, particularly during late stages. Enhanced green fluorescent protein-expressing wtMV(C−) consistently induced late-stage cell rounding and cell death in the presence of a fusion-inhibiting peptide, suggesting that the C protein can prevent cell death and is required for long-term MV infection. Neutralizing antibodies against alpha/beta interferon did not restore the growth restriction of wtMV(C−) in 293/hSLAM cells. When cynomolgus monkeys were infected with wtMV(C−) or wtMV, the number of MV-infected cells in the thymus was >1,000-fold smaller for wtMV(C−) than for wtMV. Immunohistochemical analyses showed strong expression of an MV antigen in the spleen, lymph nodes, tonsils, and larynx of a cynomolgus monkey infected with wtMV but dramatically reduced expression in the same tissues in a cynomolgus monkey infected with wtMV(C−). These data indicate that the MV C protein is necessary for efficient MV replication both in vitro and in cynomolgus monkeys

    Complete Genome of Hepatitis E Virus from Laboratory Ferrets

    No full text
    The complete genome of hepatitis E virus (HEV) from laboratory ferrets imported from the United States was identified. This virus shared only 82.4%–82.5% nt sequence identities with strains from the Netherlands, which indicated that the ferret HEV genome is genetically diverse. Some laboratory ferrets were contaminated with HEV
    corecore