53 research outputs found

    X-ray diffraction and atomic force microscopy analysis of twinned crystals: rhombohedral canavalin

    Full text link
    The structure of canavalin, the vicilin-class storage protein from jack bean, was refined to 1.7 A resolution in a highly twinned rhombohedral crystal of space group R3 and unit-cell parameters a = b = c = 83.0 A, alpha = beta = gamma = 111.1 degrees. The resulting R and R(free) were 0.176 and 0.245, respectively. The orthorhombic crystal structure (space group C222(1), unit-cell parameters a = 136.5, b = 150.3, c = 133.4 A) was also refined with threefold non-crystallographic symmetry restraints. R and R(free) were 0.181 and 0.226, respectively, for 2.6 A resolution data. No significant difference in the protein structure was seen between these two crystal forms, nor between these two and the hexagonal and cubic crystal forms reported elsewhere [Ko et al. (1993), Acta Cryst. D49, 478-489; Ko et al. (1993), Plant Physiol. 101, 729-744]. A phosphate ion was identified in the lumen of the C-terminal beta-barrel. Lattice interactions showed that the trimeric molecule could be well accommodated in both 'top-up' and 'bottom-up' orientations in a rhombohedral unit cell of the R3 crystal and explained the presence of a high twin fraction. The large inter-trimer stacking interface of the C222(1) crystal may account for its relative stability. Atomic force microscopy (AFM) investigations of the growth of three crystal forms of canavalin indicate the rhombohedral form to be unique. Unlike the other two crystal forms, it contains at least an order of magnitude more screw dislocations and stacking faults than any other macromolecular crystal yet studied, and it alone grows principally by generation of steps from the screw dislocations. The unusually high occurrence of the screw dislocations and stacking faults is attributed to mechanical stress produced by the alternate molecular orientations in the rhombohedral crystals and their organization into discrete domains or blocks. At boundaries of alternate domains, lattice strain is relieved by the formation of the screw dislocations

    Mechanisms, kinetics, impurities and defects: consequences in macromolecular crystallization.

    No full text
    The nucleation and growth of protein, nucleic acid and virus crystals from solution are functions of underlying kinetic and thermodynamic parameters that govern the process, and these are all supersaturation-dependent. While the mechanisms of macromolecular crystal growth are essentially the same as for conventional crystals, the underlying parameters are vastly different, in some cases orders of magnitude lower, and this produces very different crystallization processes. Numerous physical features of macromolecular crystals are of serious interest to X-ray diffractionists; the resolution limit and mosaicity, for example, reflect the degree of molecular and lattice order. The defect structure of crystals has an impact on their response to flash-cooling, and terminal crystal size is dependent on impurity absorption and incorporation. The variety and extent of these issues are further unique to crystals of biological macromolecules. All of these features are amenable to study using atomic force microscopy, which provides direct images at the nanoscale level. Some of those images are presented here

    Investigation by Atomic Force Microscopy of the Structure of Ty3 Retrotransposon Particles

    No full text
    Ty3, a member of the Metaviridiae family of long-terminal-repeat retrotransposons found in Saccharomyces cerevisiae, encodes homologs of retroviral Gag and Gag-Pol proteins, which, together with genomic RNA, assemble into virus-like particles (VLPs) that undergo processing and reverse transcription. The Ty3 structural proteins, capsid and nucleocapsid, contain major homology and nucleocapsid motifs similar to retrovirus capsid and nucleocapsid proteins, but Ty3 lacks a matrix-like structural domain amino terminal to capsid. Mass spectrometry analysis of Ty3 Gag3 processing products defined an acetylated Ser residue as the amino terminus of Gag3/p34, p27, and CA/p24 species and supported a model where p34 and p27 occur in phosphorylated forms. Using atomic force microscopy, VLPs were imaged from cells producing wild-type and protease and reverse transcriptase mutant Ty3. Wild-type VLPs were found to have a broad range of diameters, but the majority, if not all of the particles, exhibited arrangements of capsomeres on their surfaces which were consistent with icosahedral symmetry. Wild-type particles were in the range of 25 to 52 nm in diameter, with particles in the 42- to 52-nm diameter range consistent with T=7 symmetry. Both classes of mutant VLPs fell into a narrower range of 44 to 53 nm in diameter and appeared to be consistent with T=7 icosahedral symmetry. The smaller particles in the wild-type population likely correspond to VLPs that have progressed to reverse transcription or later stages, which do not occur in the protease and reverse transcriptase mutants. Ty3 VLPs did not undergo major external rearrangements during proteolytic maturation
    corecore