3 research outputs found

    Magneto-optical rotation and cross-phase modulation via coherently driven tripod atoms

    Full text link
    We study the interaction of a weak probe field, having two orthogonally polarized components, with an optically dense medium of four-level atoms in a tripod configuration. In the presence of a coherent driving laser, electromagnetically induced transparency is attained in the medium, dramatically enhancing its linear as well as nonlinear dispersion while simultaneously suppressing the probe field absorption. We present the semiclassical and fully quantum analysis of the system. We propose an experimentally feasible setup that can induce large Faraday rotation of the probe field polarization and therefore be used for ultra-sensitive optical magnetometry. We then study the Kerr nonlinear coupling between the two components of the probe, demonstrating a novel regime of symmetric, extremely efficient cross-phase modulation, capable of fully entangling two single-photon pulses. This scheme may thus pave the way to photon-based quantum information applications, such as deterministic all-optical quantum computation, dense coding and teleportation.Comment: Corrected typo

    Superluminal optical pulse propagation in nonlinear coherent media

    Get PDF
    The propagation of light-pulse with negative group-velocity in a nonlinear medium is studied theoretically. We show that the necessary conditions for these effects to be observable are realized in a three-level Λ\Lambda-system interacting with a linearly polarized laser beam in the presence of a static magnetic field. In low power regime, when all other nonlinear processes are negligible, the light-induced Zeeman coherence cancels the resonant absorption of the medium almost completely, but preserves the dispersion anomalous and very high. As a result, a superluminal light pulse propagation can be observed in the sense that the peak of the transmitted pulse exits the medium before the peak of the incident pulse enters. There is no violation of causality and energy conservation. Moreover, the superluminal effects are prominently manifested in the reshaping of pulse, which is caused by the intensity-dependent pulse velocity. Unlike the shock wave formation in a nonlinear medium with normal dispersion, here, the self-steepening of the pulse trailing edge takes place due to the fact that the more intense parts of the pulse travel slower. The predicted effect can be easily observed in the well known schemes employed for studying of nonlinear magneto-optical rotation. The upper bound of sample length is found from the criterion that the pulse self-steepening and group-advance time are observable without pulse distortion caused by the group-velocity dispersion.Comment: 16 pages, 7 figure
    corecore