48 research outputs found

    Computations on Nondeterministic Cellular Automata

    Get PDF
    The work is concerned with the trade-offs between the dimension and the time and space complexity of computations on nondeterministic cellular automata. It is proved, that 1). Every NCA \Cal A of dimension rr, computing a predicate PP with time complexity T(n) and space complexity S(n) can be simulated by rr-dimensional NCA with time and space complexity O(T1r+1Srr+1)O(T^{\frac{1}{r+1}} S^{\frac{r}{r+1}}) and by r+1r+1-dimensional NCA with time and space complexity O(T1/2+S)O(T^{1/2} +S). 2) For any predicate PP and integer r>1r>1 if \Cal A is a fastest rr-dimensional NCA computing PP with time complexity T(n) and space complexity S(n), then T=O(S)T= O(S). 3). If Tr,PT_{r,P} is time complexity of a fastest rr-dimensional NCA computing predicate PP then T_{r+1,P} &=O((T_{r,P})^{1-r/(r+1)^2}), T_{r-1,P} &=O((T_{r,P})^{1+2/r}). Similar problems for deterministic CA are discussed.Comment: 18 pages in AmsTex, 3 figures in PostScrip
    corecore