5 research outputs found
4-Dialkylamino-2,5-dihydroimidazol-1-oxyls with Functional Groups at the Position 2 and at the Exocyclic Nitrogen: The pH-Sensitive Spin Labels
Local acidity and electrostatic interactions are associated both with catalytic properties and the adsorption activity of various materials, and with the vital functions of biomolecules. The observation of acid–base equilibria in stable free radicals using EPR spectroscopy represents a convenient method for monitoring pH changes and the investigation of surface electrostatics, the advantages of which are especially evident in opaque and turbid samples and in porous materials such as xerogels. Imidazoline nitroxides are the most commonly used pH-sensitive spin probes and labels due to the high sensitivity of the parameters of the EPR spectra to pH changes, their small size, and their well-developed chemistry. In this work, several new derivatives of 4-(N,N-dialkylamino)-2,5-dihydrioimidazol-1-oxyl, with functional groups suitable for specific binding, were synthesized. The dependence of the parameters of their EPR spectra on pH was studied. Several showed a pKa close to 7.4, following the pH changes in a normal physiological range, and some demonstrated a monotonous change of the hyperfine coupling constant by 0.14 mT upon pH variation by four units
Key role of piRNAs in telomeric chromatin maintenance and telomere nuclear positioning in Drosophila germline
Abstract Background Telomeric small RNAs related to PIWI-interacting RNAs (piRNAs) have been described in various eukaryotes; however, their role in germline-specific telomere function remains poorly understood. Using a Drosophila model, we performed an in-depth study of the biogenesis of telomeric piRNAs and their function in telomere homeostasis in the germline. Results To fully characterize telomeric piRNA clusters, we integrated the data obtained from analysis of endogenous telomeric repeats, as well as transgenes inserted into different telomeric and subtelomeric regions. The small RNA-seq data from strains carrying telomeric transgenes demonstrated that all transgenes belong to a class of dual-strand piRNA clusters; however, their capacity to produce piRNAs varies significantly. Rhino, a paralog of heterochromatic protein 1 (HP1) expressed exclusively in the germline, is associated with all telomeric transgenes, but its enrichment correlates with the abundance of transgenic piRNAs. It is likely that this heterogeneity is determined by the sequence peculiarities of telomeric retrotransposons. In contrast to the heterochromatic non-telomeric germline piRNA clusters, piRNA loss leads to a dramatic decrease in HP1, Rhino, and trimethylated histone H3 lysine 9 in telomeric regions. Therefore, the presence of piRNAs is required for the maintenance of telomere chromatin in the germline. Moreover, piRNA loss causes telomere translocation from the nuclear periphery toward the nuclear interior but does not affect telomere end capping. Analysis of the telomere-associated sequences (TASs) chromatin revealed strong tissue specificity. In the germline, TASs are enriched with HP1 and Rhino, in contrast to somatic tissues, where they are repressed by Polycomb group proteins. Conclusions piRNAs play an essential role in the assembly of telomeric chromatin, as well as in nuclear telomere positioning in the germline. Telomeric arrays and TASs belong to a unique type of Rhino-dependent piRNA clusters with transcripts that serve simultaneously as piRNA precursors and as their only targets. Telomeric chromatin is highly sensitive to piRNA loss, implying the existence of a novel developmental checkpoint that depends on telomere integrity in the germline