18 research outputs found

    Temporarily alloying titanium to facilitate friction stir welding

    No full text
    While historically hydrogen has been considered an impurity in titanium, when used as a temporary alloying agent it promotes beneficial changes to material properties that increase the hot-workability of the metal. This technique known as thermohydrogen processing was used to temporarily alloy hydrogen with commercially pure titanium sheet as a means of facilitating the friction stir welding process. Specific alloying parameters were developed to increase the overall hydrogen content of the titanium sheet ranging from commercially pure to 30 atomic percent. Each sheet was evaluated to determine the effect of the hydrogen content on process loads and tool deformation during the plunge phase of the friction stir welding process. Two materials, H-13 tool steel and pure tungsten, were used to fabricate friction stir welding tools that were plunged into each of the thermohydrogen processed titanium sheets. Tool wear was characterized and variations in machine loads were quantified for each tool material and weld metal combination. Thermohydrogen processing was shown to beneficially lower plunge forces and stabilize machine torques at specific hydrogen concentrations. The resulting effects of hydrogen addition to titanium metal undergoing the friction stir welding process are compared with modifications in titanium properties documented in modern literature. Such comparative analysis is used to explain the variance in resulting process loads as a function of the initial hydrogen concentration of the titanium

    ENABLING HIGH SPEED FRICTION STIR WELDING OF ALUMINUM TAILOR WELDED BLANKS

    No full text
    Current welding technologies for production of aluminum tailor-welded blanks (TWBs) are utilized in low-volume and niche applications, and have yet to be scaled for the high-volume vehicle market. This study targeted further weight reduction, part reduction, and cost savings by enabling tailor-welded blank technology for aluminum alloys at high-volumes. While friction stir welding (FSW) has traditionally been applied at linear velocities less than one meter per minute, high volume production applications demand the process be extended to higher velocities more amenable to cost sensitive production environments. Unfortunately, weld parameters and performance developed and characterized at low to moderate welding velocities do not directly translate to high speed linear friction stir welding. Therefore, in order to facilitate production of high volume aluminum FSW components, parameters were developed with a minimum welding velocity of three meters per minute. With an emphasis on weld quality, welded blanks were evaluated for post-weld formability using a combination of numerical and experimental methods. Evaluation across scales was ultimately validated by stamping full-size production door inner panels made from dissimilar thickness aluminum tailor-welded blanks, which provided validation of the numerical and experimental analysis of laboratory scale tests

    Temporarily alloying titanium to facilitate friction stir welding

    No full text
    While historically hydrogen has been considered an impurity in titanium, when used as a temporary alloying agent it promotes beneficial changes to material properties that increase the hot-workability of the metal. This technique known as thermohydrogen processing was used to temporarily alloy hydrogen with commercially pure titanium sheet as a means of facilitating the friction stir welding process. Specific alloying parameters were developed to increase the overall hydrogen content of the titanium sheet ranging from commercially pure to 30 atomic percent. Each sheet was evaluated to determine the effect of the hydrogen content on process loads and tool deformation during the plunge phase of the friction stir welding process. Two materials, H-13 tool steel and pure tungsten, were used to fabricate friction stir welding tools that were plunged into each of the thermohydrogen processed titanium sheets. Tool wear was characterized and variations in machine loads were quantified for each tool material and weld metal combination. Thermohydrogen processing was shown to beneficially lower plunge forces and stabilize machine torques at specific hydrogen concentrations. The resulting effects of hydrogen addition to titanium metal undergoing the friction stir welding process are compared with modifications in titanium properties documented in modern literature. Such comparative analysis is used to explain the variance in resulting process loads as a function of the initial hydrogen concentration of the titanium

    Digital Image Correlation Characterization and Formability Analysis of Aluminum Alloy TWB during Forming

    No full text
    The formability of aluminum alloy 5754-O tailor-welded blanks prepared by friction stir welding was studied experimentally. The strain evolution and deformation during limiting dome height experiments were studied using digital image correlation and the ARAMIS software. The influence of the sheet thickness of the base materials on the punch loading, fracture strain and formability were investigated experimentally. It was found that the punch loading, fracture strain and limiting dome height values increase with the increasing sheet thickness of the base materials. A linear relationship between the limiting dome height value and the sheet thickness was demonstrated. An increase of 16.8% in the fracture strain of aluminum tailor-welded blanks was observed for an increase of 36% in sheet thickness. This paper provides a methodology for experimentally determining the forming limits of aluminum alloy tailor-welded blanks accurately

    Evaluating Temperature Control in Friction Stir Welding for Industrial Applications

    No full text
    Reports in the literature indicate that temperature control in Friction Stir Welding (FSW) enables better weld properties and easier weld process development. However, although methods of temperature control have existed for almost two decades, industry adoption remains limited. This work examines single-loop Proportional-Integral-Derivative (PID) control on spindle speed as a comparatively simple and cost-effective method of adding temperature control to existing FSW machines. Implementation of PID-based temperature control compared to uncontrolled FSW in AA6111 at linear weld speeds of 1–2 m per minute showed improved mechanical properties and greater consistency in properties along the length of the weld under temperature control. Additionally, results indicate that a minimum spindle rpm may exist, above which tensile specimens do not fracture within the weld centerline, regardless of temperature. This work demonstrates that a straightforward, PID-based implementation of temperature control at high weld rates can produce high quality welds

    Refill Friction Stir Spot Welding as an Alternative Jointing Method for Wing Spar Structures

    No full text
    Refill Friction Stir Spot Welding (RFSSW) is an emerging solid state joining process for thin sheet aluminum. Many researchers are developing RFSSW process parameters, thus enabling the use of RFSSW in many industries. Some work within this development has been on the application of RFSSW to wing spar stringer and skin joining. This is thanks to the RFSSW process being capable of welding the high-strength aluminum alloys used for wing spar construction. Traditionally wing spar joining has been achieved using rivets. This newer method has the potential to improve the strength, reduce the weight, and lower the cost of wing spar construction

    Evaluating Temperature Control in Friction Stir Welding for Industrial Applications

    No full text
    Reports in the literature indicate that temperature control in Friction Stir Welding (FSW) enables better weld properties and easier weld process development. However, although methods of temperature control have existed for almost two decades, industry adoption remains limited. This work examines single-loop Proportional-Integral-Derivative (PID) control on spindle speed as a comparatively simple and cost-effective method of adding temperature control to existing FSW machines. Implementation of PID-based temperature control compared to uncontrolled FSW in AA6111 at linear weld speeds of 1–2 m per minute showed improved mechanical properties and greater consistency in properties along the length of the weld under temperature control. Additionally, results indicate that a minimum spindle rpm may exist, above which tensile specimens do not fracture within the weld centerline, regardless of temperature. This work demonstrates that a straightforward, PID-based implementation of temperature control at high weld rates can produce high quality welds

    Fatigue Testing of Abrasive Water Jet Cut Titanium

    No full text
    Battelle Memorial Institute as part of its U.S. Department of Energy (USDOE) Contract No. DE-AC05-76RL01830 to operate the Pacific Northwest National Laboratory (PNNL) provides technology assistance to qualifying small businesses in association with a Technology Assistance Program (TAP). Qualifying companies are eligible to receive a set quantity of labor associated with specific technical assistance. Having applied for a TAP agreement to assist with fatigue characterization of Abrasive Water Jet (AWJ) cut titanium specimens, the OMAX Corporation was awarded TAP agreement 09-02. This program was specified to cover dynamic testing and analysis of fatigue specimens cut from titanium alloy Ti-6%Al-4%V via AWJ technologies. In association with the TAP agreement, a best effort agreement was made to characterize fatigue specimens based on test conditions supplied by OMAX

    A Generalized Method for In-Process Defect Detection in Friction Stir Welding

    No full text
    Friction stir welding (FSW) is an advantageous solid-state joining process that is suitable for many materials in multiple industries. In an industrial setting, manufacturers are actively seeking faster welding speeds to increase throughput. Increasing welding speed limits the size of defect-free parameter windows, which may increase the frequency of defects. The push for faster welding speeds emphasizes the need for economical non-destructive evaluation (NDE) for FSW, like any other type of welding. This work introduces a generalized defect detection method that recognizes the stochastic nature of the FSW process, and that can be generally applied to FSW of a material across a dynamic range of process parameters and welding conditions. When applied to aluminum friction stir-welded blanks at speeds ranging from 1500 to 3000 mm/min with varying ranges of tool tilts, the methodology proved 100% effective at positive detection when defects were present with zero scrap rate. Furthermore, additional development demonstrated the proposed stochastic approach can be used to detect the spatial location of a defect within a weld with 94% detection accuracy and a 4.2% scrap rate
    corecore