4 research outputs found

    MATLAB code for highly energetic materials

    Get PDF
    Detonations represent high-speed chemical reactions characterized by rapid propagation, accompanied by a release of high-pressure energy. This transformative process converts unreacted explosive materials into stable product molecules, reaching a steady state known as the Chapman-Jouguet (CJ) state. This study aims to effectively describe the detonation phenomenon in energetic materials through the application of the CJ theory. Using a computational approach, we developed a MATLAB code to calculate the minimum detonation velocity (DCJ) of the explosive and analyze product expansion under constant entropy conditions

    On some methodological issues in mathematical modeling of interacting populations

    No full text
    In this paper, we focus on some important aspects of model building. The discussion specifically concerns the case of predator-prey interactions. We introduce here two models whose slight difference lies just in the way predators survive. In the former, they are taken to feed only on the modeled prey, i.e., to be specialists; in the second one, they are generalists, i.e., they can survive on other not explicitly modeled food resources.But our main focus is on the prey, that may disappear due to the Allee effect, if reduced to very low numbers. On the other hand, they also exhibit herd behavior. Our main aim is the discussion of the issues of mathematical modeling of such situation. We show on this example that modeling requires much more than equations patching from different systems.The analysis of the models indicates that the ecosystem may collapse in the case of specialist predators. If the predators have other feeding resources, they instead can thrive. Both types of models exhibit bistability between the prey-free state and coexistence

    International Nosocomial Infection Control Consortiu (INICC) report, data summary of 43 countries for 2007-2012. Device-associated module

    No full text
    We report the results of an International Nosocomial Infection Control Consortium (INICC) surveillance study from January 2007-December 2012 in 503 intensive care units (ICUs) in Latin America, Asia, Africa, and Europe. During the 6-year study using the Centers for Disease Control and Prevention's (CDC) U.S. National Healthcare Safety Network (NHSN) definitions for device-associated health care–associated infection (DA-HAI), we collected prospective data from 605,310 patients hospitalized in the INICC's ICUs for an aggregate of 3,338,396 days. Although device utilization in the INICC's ICUs was similar to that reported from ICUs in the U.S. in the CDC's NHSN, rates of device-associated nosocomial infection were higher in the ICUs of the INICC hospitals: the pooled rate of central line–associated bloodstream infection in the INICC's ICUs, 4.9 per 1,000 central line days, is nearly 5-fold higher than the 0.9 per 1,000 central line days reported from comparable U.S. ICUs. The overall rate of ventilator-associated pneumonia was also higher (16.8 vs 1.1 per 1,000 ventilator days) as was the rate of catheter-associated urinary tract infection (5.5 vs 1.3 per 1,000 catheter days). Frequencies of resistance of Pseudomonas isolates to amikacin (42.8% vs 10%) and imipenem (42.4% vs 26.1%) and Klebsiella pneumoniae isolates to ceftazidime (71.2% vs 28.8%) and imipenem (19.6% vs 12.8%) were also higher in the INICC's ICUs compared with the ICUs of the CDC's NHSN
    corecore