252 research outputs found

    The Status of Spectroscopic Data for the Exoplanet Characterisation Missions

    Get PDF
    The status of laboratory spectroscopic data for exoplanet characterisation missions such as EChO is reviewed. For many molecules (eg H2O, CO, CO2, H3+, O2, O3) the data are already available. For the other species work is actively in progress constructing this data. Much of the is work is being undertaken by ExoMol project (www.exomol.com). This information will be used to construct and EChO-specific spectroscopic database.Comment: Experimental Astronomy, accepte

    ExoMol line lists IV: The rotation-vibration spectrum of methane up to 1500 K

    Get PDF
    A new hot line list is calculated for 12^{12}CH4_4 in its ground electronic state. This line list, called 10to10, contains 9.8 billion transitions and should be complete for temperatures up to 1500 K. It covers the wavelengths longer than 1 μ\mum and includes all transitions to upper states with energies below hc⋅18 000hc \cdot 18\,000 cm−1^{-1} and rotational excitation up to J=39J=39. The line list is computed using the eigenvalues and eigenfunctions of CH4_4 obtained by variational solution of the Schr\"{o}dinger equation for the rotation-vibration motion of nuclei employing program TROVE. An ab initio dipole moment surface and a new 'spectroscopic' potential energy surface are used. Detailed comparisons with other available sources of methane transitions including HITRAN, experimental compilations and other theoretical line lists show that these sources lack transitions both higher temperatures and near infrared wavelengths. This line list is suitable for modelling atmospheres of cool stars and exoplanets. It is available from the CDS database as well as at www.exomol.com.Comment: Submitted to MNRA

    Detecting chirality in molecules by linearly polarized laser fields

    Get PDF
    A new scheme for enantiomer differentiation of chiral molecules using a pair of linearly polarized intense ultrashort laser pulses with skewed mutual polarization is presented. The technique relies on the fact that the off-diagonal anisotropic contributions to the electric polarizability tensor for two enantiomers have different signs. Exploiting this property, we are able to excite a coherent unidirectional rotation of two enantiomers with a {\pi} phase difference in the molecular electric dipole moment. The approach is robust and suitable for relatively high temperatures of molecular samples, making it applicable for selective chiral analysis of mixtures, and to chiral molecules with low barriers between enantiomers. As an illustration, we present nanosecond laser-driven dynamics of a tetratomic non-rigid chiral molecule with short-lived chirality. The ultrafast time scale of the proposed technique is well suited to study parity violation in molecular systems in short-lived chiral states

    Laboratory spectra of hot molecules: data needs for hot super-Earth exoplanets

    Get PDF
    The majority of stars are now thought to support exoplanets. Many of those exoplanets discovered thus far are categorized as rocky objects with an atmosphere. Most of these objects are however hot due to their short orbital period. Models suggest that water is the dominant species in their atmospheres. The hot temperatures are expected to turn these atmospheres into a (high pressure) steam bath containing remains of melted rock. The spectroscopy of these hot rocky objects will be very different from that of cooler objects or hot gas giants. Molecules suggested to be important for the spectroscopy of these objects are reviewed together with the current status of the corresponding spectroscopic data. Perspectives of building a comprehensive database of linelist/cross sections applicable for atmospheric models of rocky super-Earths as part of the ExoMol project are discussed. The quantum-mechanical approaches used in linelist productions and their challenges are summarized.Comment: Molecular Astrophysics (in press) Review article 96 pages, 17 Figures, 2 Tables, 267 reference

    The ExoMol Atlas of Molecular Opacities

    Get PDF
    The ExoMol project is dedicated to providing molecular line lists for exoplanet and other hot atmospheres. The ExoMol procedure uses a mixture of ab initio calculations and available laboratory data. The actual line lists are generated using variational nuclear motion calculations. These line lists form the input for opacity models for cool stars and brown dwarfs as well as for radiative transport models involving exoplanets. This paper is a collection of molecular opacities for 52 molecules (130 isotopologues) at two reference temperatures, 300 K and 2000 K, using line lists from the ExoMol database. So far, ExoMol line lists have been generated for about 30 key molecular species. Other line lists are taken from external sources or from our work predating the ExoMol project. An overview of the line lists generated by ExoMol thus far is presented and used to evaluate further molecular data needs. Other line lists are also considered. The requirement for completeness within a line list is emphasized and needs for further line lists discussed

    ExoMol: molecular line lists for exoplanet and other atmospheres

    Get PDF
    The discovery of extrasolar planets is one of the major scientific advances of the last two decades. Hundreds of planets have now been detected and astronomers are beginning to characterise their composition and physical characteristics. To do this requires a huge quantity of spectroscopic data most of which is not available from laboratory studies. The ExoMol project will offer a comprehensive solution to this problem by providing spectroscopic data on all the molecular transitions of importance in the atmospheres of exoplanets. These data will be widely applicable to other problems and will be used for studies on cool stars, brown dwarfs and circumstellar environments. This paper lays out the scientific foundations of this project and reviews previous work in this area. A mixture of first principles and empirically-tuned quantum mechanical methods will be used to compute comprehensive and very large rotation-vibration and rotation-vibration-electronic (rovibronic) line lists. Methodologies will be developed for treating larger molecules such as methane and nitric acid. ExoMol will rely on these developments and the use of state-of-the-art computing.Comment: MNRAS (in press

    Temperature-dependent molecular absorption cross sections for exoplanets and other atmospheres

    Get PDF
    Exoplanets, and in particular hot ones such as hot Jupiters, require a very significant quantities of molecular spectroscopic data to model radiative transport in their atmospheres or to interpret their spectra. This data is commonly provided in the form of very extensive transition line lists. The size of these line lists is such that constructing a single model may require the consideration of several billion lines. We present a procedure to simplify this process based on the use of cross sections. Line lists for water, H3+_3^+, HCN /HNC and ammonia have been turned into cross sections on a fine enough grid to preserve their spectroscopic features. Cross sections are provided at a fixed range of temperatures and an interpolation procedure which can be used to generate cross sections at arbitrary temperatures is described. A web-based interface (www.exomol.com/xsec) has been developed to allow astronomers to download cross sections at specified temperatures and spectral resolution. Specific examples are presented for the key water molecule.Comment: Icarus (submitted

    ExoCross: a general program for generating spectra from molecular line lists

    Get PDF
    ExoCross is a Fortran code for generating spectra (emission, absorption) and thermodynamic properties (partition function, specific heat etc.) from molecular line lists. Input is taken in several formats, including ExoMol and HITRAN formats. ExoCross is efficiently parallelized showing also a high degree of vectorization. It can work with several line profiles such as Doppler, Lorentzian and Voigt and support several broadening schemes. Voigt profiles are handled by several methods allowing fast and accurate simulations. Two of these methods are new. ExoCross is also capable of working with the recently proposed method of super-lines. It supports calculations of lifetimes, cooling functions, specific heats and other properties. ExoCross can be used to convert between different formats, such as HITRAN, ExoMol and Phoenix. It is capable of simulating non-LTE spectra using a simple two-temperature approach. Different electronic, vibronic or vibrational bands can be simulated separately using an efficient filtering scheme based on the quantum numbers
    • …
    corecore