16 research outputs found

    Updatable Probabilistic Evaluation of Failure Rates of Mechanical Components in Power Take-Off Systems of Tidal Stream Turbines

    Get PDF
    This paper presents a method for the probabilistic evaluation of the failure rates of mechanical components in a typical power take-off (PTO) system of a horizontal-axis tidal stream turbine (HATT). The method is based on a modification of the method of the influence factors, when base failure rates, relevant influence factors and, subsequently, resulting failure rates are treated as random variables. The prior (i.e., initial) probabilistic distribution of the failure rates of a HATT component is generated using data for similar components from other industries, while taking into account actual characteristics of the component and site-specific operating and environmental conditions of the HATT. A posterior distribution of the failure rate is estimated numerically based on a Bayesian approach as new information about the component performance in an operating HATT becomes available. The posterior distribution is then employed to obtain the updated mean and lower and upper confidence limits of the failure rate. The proposed method is illustrated by applying it to the evaluation of the failure rates of two key components of the PTO system of a typical HATT—main seal and main bearing. In particular, it is shown that uncertainty associated with the method itself has a major influence on the failure rate evaluation. The proposed method is useful for the reliability assessment of both PTO designs of new HATTs and PTO systems of operating HATTs

    Dielectric Elastomers for Energy Harvesting

    Get PDF
    Dielectric elastomers are a type of electroactive polymers that can be conveniently used as sensors, actuators or energy harvesters and the latter is the focus of this review. The relatively high number of publications devoted to dielectric elastomers in recent years is a direct reflection of their diversity, applicability as well as nontrivial electrical and mechanical properties. This chapter provides a review of fundamental mechanical and electrical properties of dielectric elastomers and up-to-date information regarding new developments of this technology and it’s potential applications for energy harvesting from various vibration sources explored over the past decade

    Resilience of Critical Infrastructure Systems to Floods:A Coupled Probabilistic Network Flow and LISFLOOD-FP Model

    No full text
    In this paper, a network-flow model was constructed to simulate the performance of interdependent critical infrastructure systems during flood hazards, when there is shortage of commodities such as electrical power and water. The model enabled us to control the distribution of commodities among different consumers whose demand cannot be fully met. Incorporating time-variance in the model allowed for evaluating the time evolution of the functional level of the infrastructure systems and quantifying their resilience. As a demonstration of the model’s capability, the network model was coupled with a raster-based hydraulic flooding model in the way of Monte Carlo simulations. It was then used to investigate the cascading effects of flood-related failures of individual infrastructure assets on the performance of the critical infrastructure systems of a coastal community under different flooding scenarios and future climate impacts. The coupled modelling framework is essential for correctly assessing the interdependences and cascading effects in the infrastructure systems in the case of flood hazards. While in the considered example, the extent of inundation becomes less severe with a changing climate, the risk to infrastructure does not recede because of the cascading effects. This behaviour could not be captured by the flood model alone.</p
    corecore