82 research outputs found

    Study ofof weld morphology on thin Hastelloy C-276 sheet of Study weld morphology on thin Hastelloy C-276 sheet of pulsed laser welding pulsed laser welding

    Get PDF
    AbstractIn this paper, it was indicated that the laser welding was well suitable to joining of thin Hastelloy C-276 sheet (0.5 mm thickness), and also the fine grain were observed in welding zone with invisible HAZ (heat affected zone). In addition, the smooth weld joint could be controlled by means of the laser parameter adjustment. On the other hand, it’s proposed that Ni–Cr–Co–Mo and austenite CFe15.1 cubic face-centered crystal structure should be existed in as-received and welding samples, as well as the cause of FWHM (Full Width at Half Maximum) widened and peak offset of joined samples were analyzed

    Comparisons of three polyethyleneimine-derived nanoparticles as a gene therapy delivery system for renal cell carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Polyethyleneimine (PEI), which can interact with negatively charged DNA through electrostatic interaction to form nanocomplexes, has been widely attempted to use as a gene delivery system. However, PEI has some defects that are not fit for keeping on gene expression. Therefore, some modifications against PEI properties have been done to improve their application value in gene delivery. In this study, three modified PEI derivatives, including poly(ε-caprolactone)-pluronic-poly(ε-caprolactone) grafted PEI (PCFC-g-PEI), folic acid-PCFC-isophorone diidocyanate-PEI (FA-PEAs) and heparin-PEI (HPEI), were evaluated in terms of their cytotoxicity and transfection efficiency <it>in vitro </it>and <it>in vivo </it>in order to ascertain their potential application in gene therapy.</p> <p>Methods</p> <p>MTT assay and a marker GFP gene, encoding green fluorescent protein, were used to evaluate cell toxicity and transfection activity of the three modified PEI <it>in vitro</it>. Renal cell carcinoma (RCC) models were established in BALB/c nude mice inoculated with OS-RC-2 cells to detect the gene therapy effects using the three PEI-derived nanoparticles as gene delivery vehicles. The expression status of a target gene Von Hippel-Lindau (VHL) in treated tumor tissues was analyzed by semiquantitative RT-PCR and immunohistochemistry.</p> <p>Results</p> <p>Each of three modified PEI-derived biomaterials had an increased transfection efficiency and a lower cytotoxicity compared with its precursor PEI with 25-kD or 2-kD molecule weight <it>in vitro</it>. And the mean tumor volume was obviously decreased 30% by using FA-PEAs to transfer VHL plasmids to treat mice RCC models. The VHL gene expression was greatly improved in the VHL-treated group. While there was no obvious tumor inhibition treated by PCFC-g-PEI:VHL and HPEI:VHL complexes.</p> <p>Conclusions</p> <p>The three modified PEI-derived biomaterials, including PCFC-g-PEI, FA-PEAs and HPEI, had an increased transfection efficiency <it>in vitro </it>and obviously lower toxicities compared with their precursor PEI molecules. The FA-PEAs probably provide a potential gene delivery system to treat RCC even other cancers in future.</p

    A novel Poly(ε-caprolactone)-Pluronic-Poly(ε-caprolactone) grafted Polyethyleneimine(PCFC-g-PEI), Part 1, synthesis, cytotoxicity, and in vitro transfection study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Polyethyleneimine (PEI), a cationic polymer, is one of the successful and widely used vectors for non-viral gene transfection <it>in vitro</it>. However, its <it>in vivo </it>application was greatly limited due to its high cytotoxicity and short duration of gene expression. To improve its biocompatibility and transfection efficiency, PEI has been modified with PEG, folic acid, and chloroquine in order to improve biocompatibility and enhance targeting.</p> <p>Results</p> <p>Poly(ε-caprolactone)-Pluronic-Poly(ε-caprolactone) (PCFC) was synthesized by ring-opening polymerization, and PCFC-<it>g</it>-PEI was obtained by Michael addition reaction with GMA-PCFC-GMA and polyethyleneimine (PEI, 25 kD). The prepared PCFC-<it>g</it>-PEI was characterized by <sup>1</sup>H-NMR, SEC-MALLS. Meanwhile, DNA condensation, DNase I protection, the particle size and zeta potential of PCFC-<it>g</it>-PEI/DNA complexes were also determined. According to the results of flow cytometry and MTT assay, the synthesized PCFC-<it>g</it>-PEI, with considerable transfection efficiency, had obviously lower cytotoxicity against 293 T and A549 cell lines compared with that of PEI 25 kD.</p> <p>Conclusion</p> <p>The cytotoxicity and <it>in vitro </it>transfection study indicated that PCFC-<it>g</it>-PEI copolymer prepared in this paper was a novel gene delivery system with lower cytotoxicity and considerable transfection efficiency compared with commercial PEI (25 kD).</p

    Insights into Adaptations to a Near- Obligate Nematode Endoparasitic Lifestyle from the Finished Genome of Drechmeria coniospora

    Get PDF
    Nematophagous fungi employ three distinct predatory strategies: nematode trapping, parasitism of females and eggs, and endoparasitism. While endoparasites play key roles in controlling nematode populations in nature, their application for integrated pest management is hindered by the limited understanding of their biology. We present a comparative analysis of a high quality finished genome assembly of Drechmeria coniospora, a model endoparasitic nematophagous fungus, integrated with a transcriptomic study. Adaptation of D. coniospora to its almost completely obligate endoparasitic lifestyle led to the simplification of many orthologous gene families involved in the saprophytic trophic mode, while maintaining orthologs of most known fungal pathogen-host interaction proteins, stress response circuits and putative effectors of the small secreted protein type. The need to adhere to and penetrate the host cuticle led to a selective radiation of surface proteins and hydrolytic enzymes. Although the endoparasite has a simplified secondary metabolome, it produces a novel peptaibiotic family that shows antibacterial, antifungal and nematicidal activities. Our analyses emphasize the basic malleability of the D. coniospora genome: loss of genes advantageous for the saprophytic lifestyle; modulation of elements that its cohort species utilize for entomopathogenesis; and expansion of protein families necessary for the nematode endoparasitic lifestyle

    Flow structures in wake of a pile-supported horizontal axis tidal stream turbine

    Get PDF
    YesThis study presents results from laboratory experiments to investigate the wake structure in the lee side of a scaled three-bladed horizontal axis tidal stream turbine with a mono-pile support structure. Experiments are conducted for a range of approaching flow velocity and installation height of rotor. Analysis of the results shows that bed shear stress increases with the increase of approaching velocity and decrease of installation height within 2D (D is the diameter of the rotor) downstream of the rotor. The flow field within 2D downstream of the rotor is greatly influenced by the presence of nacelle and mono-pile. Low stream-wise flow velocity and large turbulence intensity level is detected along the flume center right behind the nacelle and mono-pile from 1D to 2D downstream of the rotor. Stream-wise velocity at the blade tip height lower than the nacelle increases sharply from 1D to 2D and gradually grows afterwards. Correspondingly, the turbulence intensity decreases quickly from 1D to 2D and slowly afterwards. Large bed shear stress is measured from 1D to 2D, which is closely related to turbulence induced by the mono-pile. It is also found that the presence of the mono-pile might make the flow field more ‘disc-shaped’.National Key Research and Development Program of China (No.2017YFC1404200), the Marine Renewable Energy Research Project of State Oceanic Administration (No.GHME2015GC01), the Fundamental Research Funds for the Central Universities of China (No.2017B696X14) and the Postgraduate Research & Practice Innovation Program of Jiangsu Province, China (No.KYCX17_0448

    Honokiol Crosses BBB and BCSFB, and Inhibits Brain Tumor Growth in Rat 9L Intracerebral Gliosarcoma Model and Human U251 Xenograft Glioma Model

    Get PDF
    BACKGROUND: Gliosarcoma is one of the most common malignant brain tumors, and anti-angiogenesis is a promising approach for the treatment of gliosarcoma. However, chemotherapy is obstructed by the physical obstacle formed by the blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BCSFB). Honokiol has been known to possess potent activities in the central nervous system diseases, and anti-angiogenic and anti-tumor properties. Here, we hypothesized that honokiol could cross the BBB and BCSFB for the treatment of gliosarcoma. METHODOLOGIES: We first evaluated the abilities of honokiol to cross the BBB and BCSFB by measuring the penetration of honokiol into brain and blood-cerebrospinal fluid, and compared the honokiol amount taken up by brain with that by other tissues. Then we investigated the effect of honokiol on the growth inhibition of rat 9L gliosarcoma cells and human U251 glioma cells in vitro. Finally we established rat 9L intracerebral gliosarcoma model in Fisher 344 rats and human U251 xenograft glioma model in nude mice to investigate the anti-tumor activity. PRINCIPAL FINDINGS: We showed for the first time that honokiol could effectively cross BBB and BCSFB. The ratios of brain/plasma concentration were respectively 1.29, 2.54, 2.56 and 2.72 at 5, 30, 60 and 120 min. And about 10% of honokiol in plasma crossed BCSFB into cerebrospinal fluid (CSF). In vitro, honokiol produced dose-dependent inhibition of the growth of rat 9L gliosarcoma cells and human U251 glioma cells with IC(50) of 15.61 µg/mL and 16.38 µg/mL, respectively. In vivo, treatment with 20 mg/kg body weight of honokiol (honokiol was given twice per week for 3 weeks by intravenous injection) resulted in significant reduction of tumor volume (112.70±10.16 mm(3)) compared with vehicle group (238.63±19.69 mm(3), P = 0.000), with 52.77% inhibiting rate in rat 9L intracerebral gliosarcoma model, and (1450.83±348.36 mm(3)) compared with vehicle group (2914.17±780.52 mm(3), P = 0.002), with 50.21% inhibiting rate in human U251 xenograft glioma model. Honokiol also significantly improved the survival over vehicle group in the two models (P<0.05). CONCLUSIONS/SIGNIFICANCE: This study provided the first evidence that honokiol could effectively cross BBB and BCSFB and inhibit brain tumor growth in rat 9L intracerebral gliosarcoma model and human U251 xenograft glioma model. It suggested a significant strategy for offering a potential new therapy for the treatment of gliosarcoma

    Heuristic Artificial Bee Colony Algorithm for Uncovering Community in Complex Networks

    Full text link
    Community structure is important for us to understand the functions and structure of the complex networks. In this paper, Heuristic Artificial Bee Colony (HABC) algorithm based on swarm intelligence is proposed for uncovering community. The proposed HABC includes initialization, employed bee searching, onlooker searching, and scout bee searching. In initialization stage, the nectar sources with simple community structure are generated through network dynamic algorithm associated with complete subgraph. In employed bee searching and onlooker searching stages, the searching function is redefined to address the community problem. The efficiency of searching progress can be improved by a heuristic function which is an average agglomerate probability of two neighbor communities. Experiments are carried out on artificial and real world networks, and the results demonstrate that HABC will have better performance in terms of comparing with the state-of-the-art algorithms
    corecore