91 research outputs found
Financial development, input of public finance and urbanization in China
This paper studies the effects of financial development and input of public finance on urbanization in China. It shows that the input of public finance has an obvious influence on the urbanization, but the financial development does not in the short run, that in the long run there is a relationship of equilibrium among them and the effects of the efficiency of financial development and the input of public finance are obvious, and that the contribution of the financial development to the urbanization is relatively greater in the longer periods
Evaluation of the Effect of Saturated Silty and Fine Sand Foundation Improved by Vibro-Flotation in Seismic Area
The improvement of liquefaction foundations in seismic region has been concerning many engineers. The authors had carried out experimental studies on the improvement of saturated silty and fine sand foundations at the suburbs of Beijing by vibroflotation method. The test results are described and the improvement effects are evaluated in this paper
Capacity of Remote Classification Over Wireless Channels
Wireless connectivity creates a computing paradigm that merges communication
and inference. A basic operation in this paradigm is the one where a device
offloads classification tasks to the edge servers. We term this remote
classification, with a potential to enable intelligent applications. Remote
classification is challenged by the finite and variable data rate of the
wireless channel, which affects the capability to transfer high-dimensional
features and thus limits the classification resolution. We introduce a set of
metrics under the name of classification capacity that are defined as the
maximum number of classes that can be discerned over a given communication
channel while meeting a target classification error probability. The objective
is to choose a subset of classes from a library that offers satisfactory
performance over a given channel. We treat two cases of subset selection.
First, a device can select the subset by pruning the class library until
arriving at a subset that meets the targeted error probability while maximizing
the classification capacity. Adopting a subspace data model, we prove the
equivalence of classification capacity maximization to Grassmannian packing.
The results show that the classification capacity grows exponentially with the
instantaneous communication rate, and super-exponentially with the dimensions
of each data cluster. This also holds for ergodic and outage capacities with
fading if the instantaneous rate is replaced with an average rate and a fixed
rate, respectively. In the second case, a device has a preference of class
subset for every communication rate, which is modeled as an instance of
uniformly sampling the library. Without class selection, the classification
capacity and its ergodic and outage counterparts are proved to scale linearly
with their corresponding communication rates instead of the exponential growth
in the last case.Comment: Submitted to IEEE for possible publicatio
Investigation on the Structure and Electrochemical Properties of La-Ce-Mg-Al-Ni Hydrogen Storage Alloy
Structure and electrochemical characteristics of La0.96Ce0.04Mg0.15Al0.05Ni2.8 hydrogen storage alloy have been investigated. X-ray diffraction analyses reveal that the La0.96Ce0.04Mg0.15Al0.05Ni2.8 hydrogen storage alloy consisted of a (La, Mg)Ni3 phase with the rhombohedral PuNi3-type structure and a LaNi5 phase with the hexagonal CaCu5-type structure. TEM shows that the alloy is multicrystal with a lattice space 0.187 nm. EDS analyse shows that the content of Mg is 3.48% (atom) which coincide well with the designed composition of the electrode alloy. Electrochemical investigations show that the maximum discharge capacity of the alloy electrode is 325 mAh g−1. The alloy electrode has higher discharge capacity within the discharge current density span from 60 mA g−1 to 300 mA g−1. Electrochemical impedance spectroscopy measurements indicate that the charge transfer resistance RT on the alloy electrode surface and the calculated exchange current density I0 are 0.135 Ω and 1298 mA g−1, respectively; the better eletrochemical reaction kinetic of the alloy electrode may be responsible for the better high-rate dischargeability
Inhibition of IRAK 1/4 alleviates colitis by inhibiting TLR4/ NF-κB pathway and protecting the intestinal barrier
Interleukin-1 receptor-associated kinase 1/4 (IRAK1/4) is the main kinase of the Toll-like receptor (TLR)-mediated pathway, considered a new target for treating inflammatory diseases. Studies showed a significant correlation between TLRs and inflammatory responses in ulcerative colitis (UC). Therefore, in this study, after inducing experimental colitis in mice with 3% dextran sulfate sodium (DSS), different concentrations of IRAK1/4 inhibitors were administered intraperitoneally. Then, the disease activity index was assessed, including the degree of pathological damage, by HE staining. Subsequently, while western blotting detected the TLR4/NF-κB pathway and intestinal barrier protein expression (Zonula-1, Occludin, Claudin-1, JAM-A), real-time polymerase chain reaction (RT-PCR) detected the mRNA expression levels of IRAK1/4 and mucin1/2. Furthermore, the expression levels of Zonula-1 and occludin were detected by immunofluorescence, including the plasma FITC-dextran 4000 concentration, to evaluate intestinal barrier permeability. However, ELISA measured the expression of inflammatory factors to reflect intestinal inflammation in mice. Investigations showed that the IRAK 1/4 inhibitor significantly reduced clinical symptoms and pathological DSS-induced colitis damage in mice and then inhibited the cytoplasmic and nuclear translocation of NF-κB p65, including the phosphorylation of IκBα and reduction in downstream inflammatory factor production. Therefore, we established that the IRAK1/4 inhibitor effectively improves colitis induced by DSS, partly by inhibiting the TLR4/NF-κB pathway, reducing inflammation, and maintaining the integrity of the colonic barrier
Insight of novel biomarkers for papillary thyroid carcinoma through multiomics
IntroductionThe overdiagnosing of papillary thyroid carcinoma (PTC) in China necessitates the development of an evidence-based diagnosis and prognosis strategy in line with precision medicine. A landscape of PTC in Chinese cohorts is needed to provide comprehensiveness.Methods6 paired PTC samples were employed for whole-exome sequencing, RNA sequencing, and data-dependent acquisition mass spectrum analysis. Weighted gene co-expression network analysis and protein-protein interactions networks were used to screen for hub genes. Moreover, we verified the hub genes' diagnostic and prognostic potential using online databases. Logistic regression was employed to construct a diagnostic model, and we evaluated its efficacy and specificity based on TCGA-THCA and GEO datasets.ResultsThe basic multiomics landscape of PTC among local patients were drawn. The similarities and differences were compared between the Chinese cohort and TCGA-THCA cohorts, including the identification of PNPLA5 as a driver gene in addition to BRAF mutation. Besides, we found 572 differentially expressed genes and 79 differentially expressed proteins. Through integrative analysis, we identified 17 hub genes for prognosis and diagnosis of PTC. Four of these genes, ABR, AHNAK2, GPX1, and TPO, were used to construct a diagnostic model with high accuracy, explicitly targeting PTC (AUC=0.969/0.959 in training/test sets).DiscussionMultiomics analysis of the Chinese cohort demonstrated significant distinctions compared to TCGA-THCA cohorts, highlighting the unique genetic characteristics of Chinese individuals with PTC. The novel biomarkers, holding potential for diagnosis and prognosis of PTC, were identified. Furthermore, these biomarkers provide a valuable tool for precise medicine, especially for immunotherapeutic or nanomedicine based cancer therapy
Finishing the euchromatic sequence of the human genome
The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
Effect of wing flexibility on aircraft flight dynamics
The purpose of this thesis is to give a preliminary investigation into the effect of wing deformation on flight dynamics. The candidate vehicle is FW-11 which is a flying wing configuration aircraft with high altitude and long endurance characteristics. The aeroelastic effect may be significant for this type of configuration. Two cases, the effect of flexible wing on lift distribution and on roll effectiveness during the cruise condition with different inertial parameters are investigated.
For the first case, as the wing bending and twisting depend on the interaction between the wing structural deflections and the aerodynamic loads, the equilibrium condition should be calculated. In order to get that condition, mass, structure characteristics and aerodynamic characteristics are estimated first. Then load model and aerodynamic model are built. Next the interaction calculation program is applied and the equilibrium condition of the aircraft is calculated. After that, effect of wing flexibility on lift parameters is investigated. The influence of CG, location of lift and location of flexural axis are investigated.
The other case is to calculate the transient roll rate response and estimate the rolling effectiveness of flexible aircraft, and compared with the rigid aircraft’s. A pure roll model is built and derivatives both for the rigid wing and the flexible wing are estimated. It has been found that flexible wing leads to the loss of control effectiveness, even cause reversal when reduces the structure natural frequency. The influence of inertia data for flexible roll is also investigated
- …