63 research outputs found

    The effect of water temperature on the pathogenicity of decapod iridescent virus 1 (DIV1) in Litopenaeus vannamei

    Get PDF
    Decapod iridescent virus 1 (DIV1) has caused huge losses to the shrimp breeding industry in recent years as a new shrimp virus. In this study, white leg shrimp, Litopenaeus vannamei, were cultured at different temperatures (26 ± 1 °C and 32 ± 1 °C) and the same salinity, then infected with DIV1 by intramuscular injection to determine the effects of water temperature on viral infection. The DIV1 copy counts in the gills, hepatopancreas, pleopods, intestines, and muscles of L. vannamei were measured in samples collected at 6, 12, and 24 h post-infection (hpi), and the survival rate of L. vannamei was assessed every 6 h after infection. At 96 hpi, the survival rates of L. vannamei in the high (32 ± 1 ℃) and standard (26 ± 1 ℃) water temperature groups were 2.22% and 4.44%, respectively. The peak time of mortality in the high-water temperature group was 6 h earlier than in the standard water temperature group. After 24 hours of DIV1 infection, the DIV1 copy counts in the standard water temperature treatment group were significantly higher than those in the high-water temperature treatment group. The tissues with the highest virus copy counts in the standard and high-temperature groups were the intestines (2.9×1011 copies/g) and muscles (7.0×108 copies/g). The effect of temperature on the pathogenicity of DIV1 differs from that of other previously studied viruses, such as white spot syndrome virus, Taura syndrome virus, and infectious hypodermal and hematopoietic necrosis virus, because the high-water temperature did not mitigate the damage caused by DIV1 infection

    Evaluation of spatial distribution and characterization of wall shear stress in carotid sinus based on two-dimensional color Doppler imaging

    No full text
    Abstract Objective This study aims to use a wall shear stress (WSS) quantitative analysis software to analyze and evaluate the carotid sinus WSS spatial distribution and characteristics in intima-media thickness (IMT) normal and thickening group by using two-dimensional color doppler flow imaging (CDFI) so as to assist clinicians to predict the location and risk of plaque formation. Methods According to IMT, 50 subjects was selected as IMT thickening group and 50 subjects as IMT normal group from subjects who had a carotid ultrasound examination in Shanghai East hospital during October 2016 to October 2017. This study presents the spatial distribution of the carotid sinus WSS based on the WSS quantitative analysis software and compared the spatial distribution and characteristics of the carotid sinus WSS between IMT thickening group and IMT normal group through two- and three-dimensional WSS maps and a fused WSS image. Results The distributional regularity of WSS in both two group was: carotid sinus < common carotid artery (CCA) < internal carotid artery (ICA) and posterior-interior wall of the carotid sinus < the anterior-lateral wall of the carotid sinus. Furthermore, the WSS of CCA, ICA, the anterior-lateral proximal wall of the carotid sinus, the anterior-lateral distal wall of the carotid sinus, the posterior-interior proximal wall of the carotid sinus, and the posterior-interior distal wall of the carotid sinus in IMT thickening group was lower than the corresponding part of IMT normal group (P < 0.05). Conclusion In summary, this WSS quantitative analysis framework by two-dimensional CDFI can measure and reflect the carotid sinus WSS spatial distribution and characteristics more accurately and visually. As a convenient tool, it may be used for clinical prediction of the plaque formation in carotid sinus in the future

    CircRNA RNA hsa_circ_0008234 Promotes Colon Cancer Progression by Regulating the miR-338-3p/ETS1 Axis and PI3K/AKT/mTOR Signaling

    No full text
    Circular RNAs (circRNAs) have been shown to play a crucial role in cancer occurrence and progression. This present work investigated the link between hsa_circ_0008234 and colon cancer. Data retrieved from GSE172229 was used to compare the circRNA profiles of colon cancer and surrounding non-tumorous tissues. The amount of RNA and protein in the molecules was determined using quantitative real-time PCR (qRT-PCR) and Western blot analysis, respectively. The cell proliferation ability was assessed using CCK8, EdU, colon formation, and nude mice tumorigenesis tests. Cell invasion and migration abilities were evaluated using transwell wound healing and mice lung metastasis model. Hsa_circ_0008234 piqued our interest because bioinformatics and qRT-PCR analyses revealed that it is upregulated in colon cancer tissue. Cell phenotypic studies suggest that hsa_circ_0008234 may significantly increase colon cancer cell aggressiveness. Mice experiments revealed that inhibiting hsa_circ_0008234 significantly reduced tumor growth and metastasis. Moreover, the fluorescence in situ hybridization experiment demonstrated that hsa_circ_0008234 is primarily found in the cytoplasm, implying that it potentially functions via a competitive endogenous RNA pathway. These findings indicated that hsa_circ_0008234 may act as a “molecular sponge” for miR-338-3p, increasing the expression of miR-338-target 3p’s ETS1. In addition, the traditional oncogenic pathway PI3K/AKT/mTOR signaling was found to be the potential downstream pathway of the hsa_circ_0008234/miR-338-3p/ETS1 axis. In conclusion, hsa_circ_0008234 increases colon cancer proliferation, infiltration, and migration via the miR-338-3p/ETS1/PI3K/AKT axis; therefore, it could serve as a target and a focus for colon cancer therapy

    Improving a Fuel Cell System’s Thermal Management by Optimizing Thermal Control with the Particle Swarm Optimization Algorithm and an Artificial Neural Network

    No full text
    The thermal management of proton exchange membrane fuel cell systems plays a significant role in a stack’s lifetime, performance, and reliability. However, it is challenging to manage the thermal system precisely due to the multiple coupling relationships between the stack’s components, its operating environment, and its thermal management system. In addition, temperature hysteresis (temporal inconsistency of temperature with electrochemical reactions and fluid mechanics) imposes more difficulties on thermal control. We aim to develop an effective thermal control model for the fuel cell system to improve the temperature regulation accuracy and response speed and thus achieve highly stable temperature control. A dynamic mechanistic model is first developed based on the physical processes of the stack and its thermal management system. The model is then validated through experiments. Based on this dynamic mechanistic model, a control model is proposed for stack thermal management with the particle swarm optimization algorithm and an artificial neural network. It is applied and compared with the traditional PID algorithm. The simulation results indicate that the regulation time of the coolant inlet temperature as the current changes is reduced by more than 74%, and the overshoot is reduced by more than 50%. Therefore, the control model can enhance the dynamic response capability and temperature control precision under complex operating conditions with constantly changing load current and preset stack temperature, ensuring the temperature’s stability and thus improving the fuel cell system’s reliability and durability

    Ultrasonic image analysis of longitudinal strain in uremic patients with preserved left ventricular ejection fraction

    No full text
    Abstract Background Patients with uremia have high cardiovascular disease morbidity and mortality despite having normal left ventricular ejection fraction (LVEF). Longitudinal strain (LS) can be associated with subtle changes in LV systolic function. The aim of this study was to use two-dimensional speckle-tracking echocardiography (2DSTE) to assess subclinical LV myocardial dysfunction and to explore strain-changing regularities in uremic patients with LVEF ≥ 55%. Methods The study population included 40 uremic patients and 40 healthy volunteers. 2DSTE was performed on all participants to assess peak LS in the basal, mid and apical LV (BLS, MLS and ALS) and the respective time to peak LS (T-BLS, T-MLS, T-ALS). Results BLS, MLS, and ALS were significantly decreased in the uremic group relative to healthy controls and LS increased going in a basal to apical direction in both groups. T-BLS, T-MLS and T-ALS was significantly increased in the uremic group compared with the control group. In uremic patients, T-BLS, but not T-MLS or T-ALS, was significantly delayed relative to the control group. Bivariate analysis of creatinine (Cr) or urea nitrogen and strain parameters revealed a correlation only between ALS and Cr. Conclusion 2DSTE can identify LV myocardial abnormalities in uremic patients with preserved LVEF at early stage, as well as some changing regularities of LS and T-LS in the left ventricle

    Loss of growth differentiation factor 9 causes an arrest of early folliculogenesis in zebrafish-A novel insight into its action mechanism.

    No full text
    Growth differentiation factor 9 (GDF9) was the first oocyte-specific growth factor identified; however, most information about GDF9 functions comes from studies in the mouse model. In this study, we created a mutant for Gdf9 gene (gdf9-/-) in zebrafish using TALEN approach. The loss of Gdf9 caused a complete arrest of follicle development at primary growth (PG) stage. These follicles eventually degenerated, and all mutant females gradually changed to males through sex reversal, which could be prevented by mutation of the male-promoting gene dmrt1. Interestingly, the phenotypes of gdf9-/- could be rescued by simultaneous mutation of inhibin α (inha-/-) but not estradiol treatment, suggesting a potential role for the activin-inhibin system or its signaling pathway in Gdf9 actions. In gdf9-null follicles, the expression of activin βAa (inhbaa), but not βAb (inhbab) and βB (inhbb), decreased dramatically; however, its expression rebounded in the double mutant (gdf9-/-;inha-/-). These results indicate clearly that the activation of PG follicles to enter the secondary growth (SG) requires intrinsic factors from the oocyte, such as Gdf9, which in turn works on the neighboring follicle cells to trigger follicle activation, probably involving activins. In addition, our data also support the view that estrogens are not involved in follicle activation as recently reported
    corecore