47 research outputs found

    Corrigendum to: The TianQin project: current progress on science and technology

    Get PDF
    In the originally published version, this manuscript included an error related to indicating the corresponding author within the author list. This has now been corrected online to reflect the fact that author Jun Luo is the corresponding author of the article

    The PSRS Algorithm based on Synchronous Barrier

    No full text
    Abstract: The biggest characteristic of LogGP model based on LogP mode is sending long messages, if all the elements to be sent are seem as a long message and sent in a single processor, a sorting algorithm should be introduced to merge those elements, but the algorithm designed in the LogP mode is heavily dependent on the accuracy of parameters such as l, o, g, p. However, parameters are often inaccurate in reality. This may lead to message traffic congestion in the transfer process and the degradation of Communication performance of system. Therefore, this study proposes a new algorithm, that is, synchronization barrier is introduced into PSRS algorithm, which can improve LogGP Model further. Network congestion will be avoided when sending a long message and system performance will be improved .The barrier synchronization method can be applied to other algorithms of LogGP model, so it has a certain practicality

    Traffic Sign Recognition Using Kernel Extreme Learning Machines With Deep Perceptual Features

    No full text

    Research on the Multi-Robot Cooperative Pursuit Strategy Based on the Zero-Sum Game and Surrounding Points Adjustment

    No full text
    Making full use of the cooperation of multi-robots can improve the success rate of apursuit task. Therefore, this paper proposes a multi-robot cooperative pursuit strategy based on the zero-sum game and surrounding points adjustment. First, a mathematical description of the multi-robot pursuit problem is constructed, and the zero-sum game model is established considering the cooperation of the pursuit robots and the confrontation between the pursuit robots and the escape robot. By solving the game model, the optimal movement strategies of the pursuit robots and the escape robot are obtained. Then, the position adjustment method of the pursuit robots is studied based on the Hungarian algorithm, and the pursuit robots are controlled to surround the escape robot. Based on this, a multi-robot cooperative pursuit strategy is proposed that divides the pursuit process into two stages: pursuit robot position adjustment and game pursuit. Finally, the correctness and effectiveness of the multi-robot cooperative pursuit strategy are verified with simulation experiments. The multi-robot cooperative pursuit strategy allows the pursuit robots to capture the escape robot successfully without conflicts among the pursuit robots. It can be seen from the documented simulation experiments that the success rate of the pursuit task using the strategy proposed in this paper is 100%

    Phosphorylation and acetylation of glycolytic enzymes cooperatively regulate their activity and lamb meat quality.

    Full text link
    peer reviewedThis study examined cooperative regulation of phosphorylation and acetylation of glycolytic enzymes on their activity and lamb meat quality. Muscle samples were divided into two groups (fast and slow) according to their glycolysis rate as defined by pH decline rate from 1 h to 1 d postmortem. In slow glycolysis rate group, the activity of hexokinase (HK), phosphofructokinase (PFK) and pyruvate kinase (PK) was lower and meat sample showed lower a*, higher shear force and cooking loss. The acetylation and phosphorylation of HK were positively correlated with HK activity. The acetylation and phosphorylation of PFK were correlated with shear force and negatively associated with PFK activity. The acetylation and phosphorylation of PK were significantly correlated with each other but showed insignificant correlations with PK activity. Briefly, the phosphorylation and acetylation of HK, PFK and PK coregulate glycolysis through different crosstalk patterns on their activity and this might affect meat quality

    A Modified Translaminar Osseous Channel-Assisted Percutaneous Endoscopic Lumbar Discectomy for Highly Migrated and Sequestrated Disc Herniations of the Upper Lumbar: Clinical Outcomes, Surgical Indications, and Technical Considerations

    No full text
    Objective is to describe a safe and effective percutaneous endoscopic approach for removal of highly migrated and sequestrated disc herniations of the upper lumbar spine and to report the results, surgical indications, and technical considerations of the new technique. Eleven patients who had highly migrated and sequestrated disc herniations in the upper lumbar were included in this study. A retrospective study was performed for all patients after translaminar osseous channel-assisted PELD was performed. Radiologic findings were investigated, and pre-and postoperative visual analog scale (VAS) assessments for back and leg pain and Oswestry disability index (ODI) evaluations were performed. Surgical outcomes were evaluated under modified MacNab criteria. All of the patients were followed for more than 1 year. The preoperative and postoperative radiologic findings revealed that the decompression of the herniated nucleus pulposus (HNP) was complete. After surgery, the mean VAS scores for back and leg pain immediately improved from 8.64 (range, 7–10) and 8.00 (range, 6–10) to 2.91 (range, 2–4) and 2.27 (range, 1–3), respectively. The mean preoperative ODI was 65.58 (range, 52.2–86), which decreased to 7.51 (range, 1.8–18) at the 12-month postoperative follow-up. The MacNab scores at the final follow-up included nine excellent, one good, and one fair. The modified translaminar osseous channel-assisted PELD could be a safe and effective option for the treatment of highly migrated and sequestrated disc herniations of the upper lumbar

    Design and Optimization of Asymmetric Grating Assisted Slot Microring

    No full text
    In this paper, a slot microring with an asymmetric grating structure is proposed. Through the coupling between the grating and the slot microring, a high free spectral range or EIT-like effects with a high quality factor can be achieved in the same device. The grating is designed as an asymmetric structure to realize the modulation of the optical signal and the control of the resonance peak by changing the grid number, and the effect of different grating periods on the output spectrum is explored. The results show that changing the grating on slot sidewalls can increase or decrease the number of resonant peaks. By selecting a specific period of the gratings on both sides of the slot, the distance between adjacent resonance peaks can be increased to achieve modulation of the free spectral range. In this paper, depending on the grating period, we obtain a quality factor of 5016 and an FSR of 137 nm, or a quality factor of 10,730 and an FSR of 92 nm. The refractive index sensing simulation is carried out for one of the periods, which can achieve a sensitivity of 370 nm/RIU. Therefore, the proposed new structure has certain advantages in different sensing applications

    UPLC-MS/MS of Atractylenolide I, Atractylenolide II, Atractylenolide III, and Atractyloside A in Rat Plasma after Oral Administration of Raw and Wheat Bran-Processed Atractylodis Rhizoma

    No full text
    Atractylodis Rhizoma is the dried rhizome of Atractylodes lancea (Thunb.) DC. or Atractylodes chinensis (DC.) Koidz and is often processed by stir-frying with wheat bran to reduce its dryness and increase its spleen tonifying activity. However, the mechanism by which the processing has this effect remains unknown. To explain the mechanism based on the pharmacokinetics of the active compounds, a rapid, sensitive ultra-performance liquid chromatography-tandem mass spectrometry method was developed to analyze atractylenolides I, II, and III, and atractyloside A simultaneously in rat plasma after oral administration of raw and processed Atractylodis Rhizoma. Acetaminophen was used as the internal standard and the plasma samples were pretreated with methanol. Positive ionization mode coupled with multiple reaction monitoring mode was used to analyze the four compounds. The method validation revealed that all the calibration curves displayed good linear regression over the concentration ranges of 3.2⁻350, 4⁻500, 4⁻500, and 3.44⁻430 ng/mL for atractylenolides I, II, and III, and atractyloside A, respectively. The relative standard deviations of the intra- and inter-day precisions of the four compounds were less than 6% with accuracies (relative error) below 2.38%, and the extraction recoveries were more than 71.90 ± 4.97%. The main pharmacokinetic parameters of the four compounds were estimated with Drug and Statistics 3.0 and the integral pharmacokinetics were determined based on an area under the curve weighting method. The results showed that the integral maximum plasma concentration and area under the curve increased after oral administration of processed Atractylodis Rhizoma

    Effects of protein phosphorylation on glycolysis through the regulation of enzyme activity in ovine muscle

    Full text link
    To verify the effect of protein phosphorylation on glycolysis and elucidate the regulatory mechanism from the perspective of enzyme activity, ovine muscle was treated with a kinase inhibitor, dimethyl sulfoxide, or a phosphatase inhibitor and the activities of glycogen phosphorylase, pyruvate kinase and phosphofructokinase were determined. The protein phosphorylation level was significantly different after incubation of muscle with kinase or phosphatase inhibitors. The pH value and lactate content revealed that a high phosphorylation level was the reason for the fast glycolysis. The glycogen phosphorylase, pyruvate kinase and phosphofructokinase activities were significantly higher in the phosphatase inhibitor group than in the other two groups (p < 0.05). Therefore, protein phosphorylation is involved in activating these three enzymes. In summary, protein phosphorylation plays a role in post-mortem glycolysis through the regulation of enzyme activity in ovine muscle. © 2019 Elsevier Lt
    corecore