3 research outputs found

    Simulation of Adsorption Process of l‑Tryptophan on Mixed-Mode Resin HD‑1 with Combined Physical Adsorption and Ion Exchange

    No full text
    The mass-transfer process of l-tryptophan (l-Trp) in the hydrophobic interaction/ion-exchange mixed-mode resin HD-1 particles and fixed bed was studied experimentally and theoretically. The adsorption kinetics of l-Trp in single-component and multicomponent adsorption systems was investigated under different pH conditions. The co-adsorption of sodium ions (Na+) and l-Trp anions was found to be negligible. A modified liquid-film linear driving force model considering the physical adsorption of l-Trp zwitterions and anions as well as ion exchange of l-Trp cations was proposed. The dissociation equilibria of l-Trp molecules and functional groups on the resin were introduced in the model. The model could well fit the kinetic adsorption curves of l-Trp at different pH values. The presence of Na+ and the impurity amino acid l-glutamic acid (l-Glu) did not significantly affect the mass-transfer rate of l-Trp. The dynamic adsorption processes of l-Trp under different pH and concentration conditions were studied. A modified transport-dispersive model considering axial diffusion, liquid-film mass transfer, and a combined physical adsorption and ion-exchange equilibrium was established, which could predict the adsorption breakthrough curves of l-Trp well. During the dynamic adsorption process, the pH of mobile phase in the fixed bed changed with changing the l-Trp concentration in the mobile phase. l-Trp was well separated from Na+ and l-Glu with the purity of l-Trp higher than 99%, the recovery rate higher than 95%, and a concentration of 4.69 × 10–3 mol/L. The elution chromatographic peaks of l-Trp, l-Glu, and Na+ and the pH of the outlet solution were predicted satisfactorily

    Biocatalytic Membrane Based on Polydopamine Coating: A Platform for Studying Immobilization Mechanisms

    No full text
    Application of biocatalytic membrane is promising in food, pharmaceutical, and water treatment industries, whereas enzyme immobilization is the key step of biocatalytic membrane preparation. Thus, how to minimize the negative effect of immobilization on enzyme performance is required to answer. In this work, we proposed a platform for biocatalytic membrane preparation and immobilization mechanism investigation based on polydopamine (PDA) coating, which was demonstrated by immobilizing five commonly used enzymes (laccase, glucose oxidase, lipase, pepsin, and dextranase) on three commercially available membranes via three immobilization mechanisms (electrostatic attraction, covalent bonding, and hydrophobic adsorption), respectively. By examining the enzyme loading, activity, and kinetics under different immobilization mechanisms, we found that except for dextranase, enzyme immobilization via electrostatic attraction retained the most activity, whereas covalent bonding and hydrophobic adsorption were detrimental to enzyme conformation. Enzyme immobilization via covalent bonding ensured a high enzyme loading, and hydrophobic adsorption was only suitable for lipase and dextranase immobilization. Moreover, the properties of functional groups around the enzyme active center should be considered for the selection of suitable immobilization strategy (i.e., avoid covering the active center by membrane carrier). This work not only established a versatile platform for biocatalytic membrane preparation but also provided a novel methodology to evaluate the effect of immobilization mechanisms on enzyme performance

    Electrically Templated Dewetting of a UV-Curable Prepolymer Film for the Fabrication of a Concave Microlens Array with Well-Defined Curvature

    No full text
    This paper presents an economic method, based on electrically templated dewetting of a UV-curable prepolymer, for fabricating a concave microlens array (MLA) of high quality and high density. In our strategy, a voltage is applied to an electrode pair consisting of a conductive substrate coated with a UV-curable prepolymer film and a microhole-arrayed silicon template, sandwiching an air gap, to dewet the prepolymer film into a curved air–liquid interface. At or beyond a critical voltage, the curved prepolymer can be pulled quickly into contact with the protrusive underside of the silicon template. Contact of the prepolymer with the template can be detected by monitoring the leaky current in the polymer, followed by a UV curing of the prepolymer. Finally, by separating the mold from the solidified polymer, a concave MLA is obtained. The curvature of the MLA can be well-defined simply by changing the air gap between the mold and prepolymer film. Besides, the dewetting strategy results in a much smaller adhesion area between the mold and solidified polymer structures, which allows for easy separation of the mold from the MLA in a large-area operation
    corecore