29 research outputs found

    Persistence of Protective Immunity to Malaria Induced by DNA Priming and Poxvirus Boosting: Characterization of Effector and Memory CD8+-T-Cell Populations

    Get PDF
    The persistence of immunity to malaria induced in mice by a heterologous DNA priming and poxvirus boosting regimen was characterized. Mice were immunized by priming with DNA vaccine plasmids encoding the Plasmodium yoelii circumsporozoite protein (PyCSP) and murine granulocyte-macrophage colony-stimulating factor and boosting with recombinant vaccinia encoding PyCSP. BALB/c mice immunized with either high-dose (100 µg of p PyCSP plus 30 µg of pGM-CSF) or low-dose (1 µg of p PyCSP plus 1 µg of pGM-CSF DNA) priming were protected against challenge with 50 P. yoelii sporozoites. Protection 2 weeks after immunization was 70 to 100%, persisted at this level for at least 20 weeks, and declined to 30 to 40% by 28 weeks. Eight of eight mice protected at 20 weeks were still protected when rechallenged at 40 weeks. The antigen (Ag)-specific effector CD8+-T-cell population present 2 weeks after boosting had ex vivo Ag-specific cytolytic activity, expressed both gamma interferon (IFN-{gamma}) and tumor necrosis factor alpha, and constituted 12 to 20% of splenic CD8+ T cells. In contrast, the memory CD8+-Ag-specific-cell population at 28 weeks lacked cytolytic activity and constituted only 6% of splenic CD8+ T cells, but at the single-cell level it produced significantly higher levels of IFN-{gamma} than the effectors. High levels of Ag- or parasite-specific antibodies present 2 weeks after boosting had declined three- to sevenfold by 28 weeks. Low-dose priming was similarly immunogenic and as protective as high-dose priming against a 50-, but not a 250-, sporozoite challenge. These results demonstrate that a heterologous priming and boosting vaccination can provide lasting protection against malaria in this model system

    Circumventing genetic restriction of protection against malaria with multigene DNA immunization: CD8+ cell-, interferon γ-, and nitric oxide-dependent immunity

    No full text
    Despite efforts to develop vaccines that protect against malaria by inducing CD8+ T cells that kill infected hepatocytes, no subunit vaccine has been shown to circumvent the genetic restriction inherent in this approach, and little is known about the interaction of subunit vaccine-induced immune effectors and infected hepatocytes. We now report that immunization with plasmid DNA encoding the plasmodium yoelii circumsporozoite protein protected one of five strains of mice against malaria (H-2d, 75%); a PyHEP17 DNA vaccine protected three of the five strains (H-2a, 71%; H-2k, 54%; H-2d, 26%); and the combination protected 82% of H-2a, 90% of H-2k, and 88% of H-2d mice. Protection was absolutely dependent on CD8+ T cells, INF-γ, or nitric oxide. These data introduce a new target of protective preerythrocytic immune responses, PyHEP 17 and its P. falciparum homologue, and provide a realistic perspective on the opportunities and challenges inherent in developing malaria vaccines that target the infected hepatocyte

    Malaria DNA vaccines in Aotus monkeys

    No full text
    In preparation for the development of DNA vaccines designed to produce protective antibodies against Plasmodium falciparum antigens (Ag), we conducted studies to optimize antibody responses in Aotus monkeys after immunization with the P. yoelli circumsporozoite (CSP) DNA vaccine. We demonstrate in Aotus monkeys that an intradermal route of immunization with a PyCSP plasmid DNA vaccine generates antibody responses equivalent to a multiple antigen peptide/adjuvant based vaccine, and that these data support the use of the intradermal route for initial studies of the efficacy of DNA vaccines in inducing protective antibodies against P. falciparum antigens in Aotus monkeys

    A Small Peptide (CEL-1000) Derived from the β-Chain of the Human Major Histocompatibility Complex Class II Molecule Induces Complete Protection against Malaria in an Antigen-Independent Manner

    Get PDF
    CEL-1000 (DGQEEKAGVVSTGLIGGG) is a novel potential preventative and therapeutic agent. We report that CEL-1000 confers a high degree of protection against Plasmodium sporozoite challenge in a murine model of malaria, as shown by the total absence of blood stage infection following challenge with 100 sporozoites (100% protection) and by a substantial reduction (400-fold) of liver stage parasite RNA following challenge with 50,000 sporozoites. CEL-1000 protection was demonstrated in A/J (H-2(a)) and C3H/HeJ (H-2(k)) mice but not in BALB/c (H-2(d)) or CAF1 (A/J × BALB/c F(1) hybrid) mice. In CEL-1000-treated and protected mice, high levels of gamma interferon (IFN-γ) in serum and elevated frequencies of hepatic and splenic CD4(+) IFN-γ-positive T cells were detected 24 h after administration of an additional dose of CEL-1000. Treatment of A/J mice that received CEL-1000 with antibodies against IFN-γ just prior to challenge abolished the protection, and a similar treatment with antibodies against CD4(+) T cells partially reduced the level of protection, while treatment with control antibodies or antibodies specific for interleukin-12 (IL-12), CD8(+) T cells, or NK cells had no effect. Our data establish that the protection induced by CEL-1000 is dependent on IFN-γ and is partially dependent on CD4(+) T cells but is independent of CD8(+) T cells, NK cells, and IL-12 at the effector phase and does not induce a detectable antibody response

    Boosting of DNA Vaccine-Elicited Gamma Interferon Responses in Humans by Exposure to Malaria Parasites

    No full text
    A mixture of DNA plasmids expressing five Plasmodium falciparum pre-erythrocyte-stage antigens was administered with or without a DNA plasmid encoding human granulocyte-macrophage colony-stimulating factor (hGM-CSF) as an immune enhancer. After DNA immunization, antigen-specific gamma interferon (IFN-γ) responses were detected by ELISPOT in 15/31 volunteers to multiple class I- and/or class II-restricted T-cell epitopes derived from all five antigens. Responses to multiple epitopes (≤7) were detected simultaneously in some volunteers. By 4 weeks after challenge with P. falciparum parasites, 23/31 volunteers had positive IFN-γ responses and the magnitude of responses was increased from 2- to 143-fold. Nonetheless, none was protected against malaria. Volunteers who received hGM-CSF had a reduced frequency of IFN-γ responses to class I peptides compared to those who only received plasmids expressing P. falciparum proteins before challenge (3/23 versus 3/8; P = 0.15) or after parasite challenge (4/23 versus 5/8; P = 0.015) but not to class II peptides before or after challenge. The responses to one antigen (P. falciparum circumsporozoite protein [PfCSP]) were similar among volunteers who received the five-gene mixture compared to volunteers who only received the PfCSP DNA plasmid in a previous study. In summary, DNA-primed IFN-γ responses were boosted in humans by exposure to native antigen on parasites, coadministration of a plasmid expressing hGM-CSF had a negative effect on boosting of class I-restricted IFN-γ responses, and there was no evidence that immunization with PfCSP DNA in the mixture reduced T-cell responses to PfCSP compared to when it was administered alone

    A Plasmodium vivax Plasmid DNA- and adenovirus-vectored malaria vaccine encoding blood-stage antigens AMA1 and MSP1 42 in a prime/boost heterologous immunization regimen partially protects Aotus monkeys against blood-stage challenge

    No full text
    Malaria is caused by parasites of the genus Plasmodium, which are transmitted to humans by the bites of Anopheles mosquitoes. After the elimination of Plasmodium falciparum, it is predicted that Plasmodium vivax will remain an important cause of morbidity and mortality outside Africa, stressing the importance of developing a vaccine against P. vivax malaria. In this study, we assessed the immunogenicity and protective efficacy of two P. vivax antigens, apical membrane antigen 1 (AMA1) and the 42-kDa C-terminal fragment of merozoite surface protein 1 (MSP142) in a plasmid recombinant DNA prime/adenoviral (Ad) vector boost regimen in Aotus monkeys. Groups of 4 to 5 monkeys were immunized with plasmid DNA alone, Ad alone, prime/boost regimens with each antigen, prime/boost regimens with both antigens, and empty vector controls and then subjected to blood-stage challenge. The heterologous immunization regimen with the antigen pair was more protective than either antigen alone or both antigens delivered with a single vaccine platform, on the basis of their ability to induce the longest prepatent period and the longest time to the peak level of parasitemia, the lowest peak and mean levels of parasitemia, the smallest area under the parasitemia curve, and the highest self-cure rate. Overall, prechallenge MSP142 antibody titers strongly correlated with a decreased parasite burden. Nevertheless, a significant proportion of immunized animals developed anemia. In conclusion, the P. vivax plasmid DNA/Ad serotype 5 vaccine encoding blood-stage parasite antigens AMA1 and MSP142 in a heterologous prime/boost immunization regimen provided significant protection against blood-stage challenge in Aotus monkeys, indicating the suitability of these antigens and this regimen for further development
    corecore