15 research outputs found

    Multi-Camera Digital Image Correlation in Deformation Measurement of Civil Components with Large Slenderness Ratio and Large Curvature

    No full text
    To address the limitations of conventional stereo-digital image correlation (DIC) on measuring complex objects, a continuous-view multi-camera DIC (MC-DIC) system and its two forms of camera arrangement are introduced. Multiple cameras with certain overlapping field of view are calibrated simultaneously to form an overall system for measuring the continuous full-surface deformation. The bending experiment of coral aggregate concrete beam and the axial compression experiment of timber column are conducted to verify the capability of continuous-view MC-DIC in deformation measurement of civil components with large slenderness ratio and large curvature, respectively. The obtained deformation data maintain good consistency with the displacement transducer and strain gauge. Results indicate that the continuous-view MC-DIC is a reliable 3D full-field measurement approach in civil measurements

    Self-Vibration of Liquid Crystal Elastomer Strings under Steady Illumination

    No full text
    Self-vibrating systems based on active materials have been widely developed, but most of the existing self-oscillating systems are complex and difficult to control. To fulfill the requirements of different functions and applications, it is necessary to construct more self-vibrating systems that are easy to control, simple in material preparation and fast in response. This paper proposes a liquid crystal elastomer (LCE) string–mass structure capable of continuous vibration under steady illumination. Based on the linear elastic model and the dynamic LCE model, the dynamic governing equations of the LCE string–mass system are established. Through numerical calculation, two regimes of the LCE string–mass system, namely the static regime and the self-vibration regime, are obtained. In addition, the light intensity, contraction coefficient and elastic coefficient of the LCE can increase the amplitude and frequency of the self-vibration, while the damping coefficient suppresses the self-oscillation. The LCE string–-mass system proposed in this paper has the advantages of simple structure, easy control and customizable size, which has a wide application prospect in the fields of energy harvesting, autonomous robots, bionic instruments and medical equipment

    Self-Sustained Euler Buckling of an Optically Responsive Rod with Different Boundary Constraints

    No full text
    Self-sustained oscillations can directly absorb energy from the constant environment to maintain its periodic motion by self-regulating. As a classical mechanical instability phenomenon, the Euler compression rod can rapidly release elastic strain energy and undergo large displacement during buckling. In addition, its boundary configuration is usually easy to be modulated. In this paper, we develop a self-sustained Euler buckling system based on optically responsive liquid crystal elastomer (LCE) rod with different boundary constraints. The buckling of LCE rod results from the light-induced expansion and compressive force, and the self-buckling is maintained by the energy competition between the damping dissipation and the net work done by the effective elastic force. Based on the dynamic LCE model, the governing equations for dynamic Euler buckling of the LCE rod is formulated, and the approximate admissible trigonometric functions and Runge-Kutta method are used to solve the dynamic Euler buckling. Under different illumination parameters, there exists two motion modes of the Euler rod: the static mode and the self-buckling mode, including alternating and unilateral self-buckling modes. The triggering conditions, frequency, and amplitude of the self-sustained Euler buckling can be modulated by several system parameters and boundary constraints. Results indicate that strengthening the boundary constraint can increase the frequency and reduce the amplitude. It is anticipated that this system may open new avenues for energy harvesters, signal sensors, mechano-logistic devices, and autonomous robots

    Self-Vibration of a Liquid Crystal Elastomer Fiber-Cantilever System under Steady Illumination

    No full text
    A new type of self-oscillating system has been developed with the potential to expand its applications in fields such as biomedical engineering, advanced robotics, rescue operations, and military industries. This system is capable of sustaining its own motion by absorbing energy from the stable external environment without the need for an additional controller. The existing self-sustained oscillatory systems are relatively complex in structure and difficult to fabricate and control, thus limited in their implementation in practical and complex scenarios. In this paper, we creatively propose a novel light-powered liquid crystal elastomer (LCE) fiber-cantilever system that can perform self-sustained oscillation under steady illumination. Considering the well-established LCE dynamic model, beam theory, and deflection formula, the control equations for the self-oscillating system are derived to theoretically study the dynamics of self-vibration. The LCE fiber-cantilever system under steady illumination is found to exhibit two motion regimes, namely, the static and self-vibration regimes. The positive work done by the tension of the light-powered LCE fiber provides some compensation against the structural resistance from cantilever and the air damping. In addition, the influences of system parameters on self-vibration amplitude and frequency are also studied. The newly constructed light-powered LCE fiber-cantilever system in this paper has a simple structure, easy assembly/disassembly, easy preparation, and strong expandability as a one-dimensional fiber-based system. It is expected to meet the application requirements of practical complex scenarios and has important application value in fields such as autonomous robots, energy harvesters, autonomous separators, sensors, mechanical logic devices, and biomimetic design

    Thermally Driven Continuous Rolling of a Thick-Walled Cylindrical Rod

    No full text
    Self-sustained motion can take advantage of direct energy extraction from a steady external environment to maintain its own motion, and has potential applications in energy harvesting, robotic motion, and transportation. Recent experiments have found that a thermally responsive rod can perform self-sustained rolling on a flat hot plate with an angular velocity determined by the competition between the thermal driving moment and the friction moment. A rod with a hollow cross section tends to greatly reduce the frictional resistance, while promising improvements in thermal conversion efficiency. In this paper, through deriving the equilibrium equations for steady-state self-sustained rolling of the thick-walled cylindrical rod, estimating the temperature field on the rod cross-section, and solving the analytical solution of the thermally induced driving moment, the dynamic behavior of the thermally driven self-sustained rolling of the thick-walled cylindrical rod is theoretically investigated. In addition, we investigate in detail the effects of radius ratio, heat transfer coefficient, heat flux, contact angle, thermal expansion coefficient, and sliding friction coefficient on the angular velocity of the self-sustained rolling of the thick-walled cylindrical rod to obtain the optimal ratio of internal and external radius. The results are instructive for the application of thick-walled cylindrical rods in the fields of waste heat harvesters and soft robotics

    Self-Jumping of a Liquid Crystal Elastomer Balloon under Steady Illumination

    No full text
    Self-oscillation capable of maintaining periodic motion upon constant stimulus has potential applications in the fields of autonomous robotics, energy-generation devices, mechano-logistic devices, sensors, and so on. Inspired by the active jumping of kangaroos and frogs in nature, we proposed a self-jumping liquid crystal elastomer (LCE) balloon under steady illumination. Based on the balloon contact model and dynamic LCE model, a nonlinear dynamic model of a self-jumping LCE balloon under steady illumination was formulated and numerically calculated by the Runge–Kutta method. The results indicated that there exist two typical motion regimes for LCE balloon under steady illumination: the static regime and the self-jumping regime. The self-jumping of LCE balloon originates from its expansion during contact with a rigid surface, and the self-jumping can be maintained by absorbing light energy to compensate for the damping dissipation. In addition, the critical conditions for triggering self-jumping and the effects of several key system parameters on its frequency and amplitude were investigated in detail. The self-jumping LCE hollow balloon with larger internal space has greater potential to carry goods or equipment, and may open a new insight into the development of mobile robotics, soft robotics, sensors, controlled drug delivery, and other miniature device applications

    Chaotic motion behaviors of liquid crystal elastomer pendulum under periodic illumination

    No full text
    The active material of liquid crystal elastomer (LCE) is capable of harvesting energy directly from the surroundings and sustaining continuous motion in the presence of light and heat. It is extensively employed in active machinery, soft robotics, biomedicine, and other fields. To date, there is barely any research on the sustained chaotic motion system of LCE pendulum. The main objective of this paper is to put forward a sustained motion system of a simple pendulum comprising photosensitive LCE. In accordance with the LCE dynamic model, a nonlinear dynamic model of the LCE simple pendulum is established, and its motion behavior characteristics under periodic illumination are examined. The numerical outcomes demonstrate that apart from the in-situ vibration mode, the LCE pendulum experiences two types of displacement motion modes as well, namely periodic oscillation mode and chaotic motion mode. The mechanism underlying the sustained periodic oscillation and chaotic motion is revealed by compensating for the damping dissipation with work done by the LCE contraction. Moreover, the discussion also covers how the system parameters affect the motion modes of the LCE simple pendulum. Through altering the parameters such as illumination period, contraction coefficient, light intensity, damping coefficient and gravitational acceleration, it is possible to realize the distinct motion modes of the LCE simple pendulum. This research may deepen the comprehension on the motion behavior of the simple pendulum, and provide scientific guidance for the design and exploration of chaotic systems based on active materials

    Numerical Investigation of Existing Tunnel Deformation Induced by Basement Excavation Considering the Unloading Ratio

    No full text
    Basement excavation may induce deformations of the adjacent tunnels. The response of existing tunnels to basement excavation considering the critical unloading ratio is rarely studied. In this study, a three-dimensional numerical model is established to investigate basement–tunnel interaction. Then, the numerical model is validated by simulating the centrifuge model test. Thereafter, the influences of basement geometry and tunnel location relative to the basement on the vertical deformation of the tunnel are studied. The results show that the vertical deformation of the tunnel increases linearly with the unloading ratio, which describes the degree of excavation depth above the tunnel. But there exists a critical unloading ratio of 0.6, beyond which the vertical deformation of the tunnel increases significantly. On this basis, an empirical model is proposed to predict the vertical deformation of the tunnel considering the unloading ratio

    Heat-Driven Synchronization in Coupled Liquid Crystal Elastomer Spring Self-Oscillators

    No full text
    Self-oscillating coupled machines are capable of absorbing energy from the external environment to maintain their own motion and have the advantages of autonomy and portability, which also contribute to the exploration of the field of synchronization and clustering. Based on a thermally responsive liquid crystal elastomer (LCE) spring self-oscillator in a linear temperature field, this paper constructs a coupling and synchronization model of two self-oscillators connected by springs. Based on the existing dynamic LCE model, this paper theoretically reveals the self-oscillation mechanism and synchronization mechanism of two self-oscillators. The results show that adjusting the initial conditions and system parameters causes the coupled system to exhibit two synchronization modes: in-phase mode and anti-phase mode. The work conducted by the driving force compensates for the damping dissipation of the system, thus maintaining self-oscillation. The phase diagrams of different system parameters are drawn to illuminate the self-oscillation and synchronization mechanism. For weak interaction, changing the initial conditions may obtain the modes of in-phase and anti-phase. Under conditions of strong interactions, the system consistently exhibits an in-phase mode. Furthermore, an investigation is conducted on the influence of system parameters, such as the LCE elastic coefficient and spring elastic coefficient, on the amplitudes and frequencies of the two synchronization modes. This study aims to enhance the understanding of self-oscillator synchronization and its potential applications in areas such as energy harvesting, power generation, detection, soft robotics, medical devices and micro/nanodevices

    Beating of a Spherical Liquid Crystal Elastomer Balloon under Periodic Illumination

    No full text
    Periodic excitation is a relatively simple and common active control mode. Owing to the advantages of direct access to environmental energy and controllability under periodic illumination, it enjoys broad prospects for application in soft robotics and opto-mechanical energy conversion systems. More new oscillating systems need to be excavated to meet the various application requirements. A spherical liquid crystal elastomer (LCE) balloon model driven by periodic illumination is proposed and its periodic beating is studied theoretically. Based on the existing dynamic LCE model and the ideal gas model, the governing equation of motion for the LCE balloon is established. The numerical calculations show that periodic illumination can cause periodic beating of the LCE balloon, and the beating period of the LCE balloon depends on the illumination period. For the maximum steady-state amplitude of the beating, there exists an optimum illumination period and illumination time rate. The optimal illumination period is proved to be equivalent to the natural period of balloon oscillation. The effect of system parameters on beating amplitude are also studied. The amplitude is mainly affected by light intensity, contraction coefficient, amount of gaseous substance, volume of LCE balloon, mass density, external pressure, and damping coefficient, but not the initial velocity. It is expected that the beating LCE balloon will be suitable for the design of light-powered machines including engines, prosthetic blood pumps, aircraft, and swimmers
    corecore