8 research outputs found

    Angiopoietin-Like Growth Factor Involved in Leptin Signaling in the Hypothalamus

    No full text
    The hypothalamic regulation of appetite governs whole-body energy balance. Satiety is regulated by endocrine factors including leptin, and impaired leptin signaling is associated with obesity. Despite the anorectic effect of leptin through the regulation of the hypothalamic feeding circuit, a distinct downstream mediator of leptin signaling in neuron remains unclear. Angiopoietin-like growth factor (AGF) is a peripheral activator of energy expenditure and antagonizes obesity. However, the regulation of AGF expression in brain and localization to mediate anorectic signaling is unknown. Here, we demonstrated that AGF is expressed in proopiomelanocortin (POMC)-expressing neurons located in the arcuate nucleus (ARC) of the hypothalamus. Unlike other brain regions, hypothalamic AGF expression is stimulated by leptin-induced signal transducers and activators of transcription 3 (STAT3) phosphorylation. In addition, leptin treatment to hypothalamic N1 cells significantly enhanced the promoter activity of AGF. This induction was abolished by the pretreatment of ruxolitinib, a leptin signaling inhibitor. These results indicate that hypothalamic AGF expression is induced by leptin and colocalized to POMC neurons

    Auraptene Enhances Junction Assembly in Cerebrovascular Endothelial Cells by Promoting Resilience to Mitochondrial Stress through Activation of Antioxidant Enzymes and mtUPR

    No full text
    Junctional proteins in cerebrovascular endothelial cells are essential for maintaining the barrier function of the blood-brain barrier (BBB), thus protecting the brain from the infiltration of pathogens. The present study showed that the potential therapeutic natural compound auraptene (AUR) enhances junction assembly in cerebrovascular endothelial cells by inducing antioxidant enzymes and the mitochondrial unfolded protein response (mtUPR). Treatment of mouse cerebrovascular endothelial cells with AUR enhanced the expression of junctional proteins, such as occludin, zonula occludens-1 (ZO-1) and vascular endothelial cadherin (VE-cadherin), by increasing the levels of mRNA encoding antioxidant enzymes. AUR treatment also resulted in the depolarization of mitochondrial membrane potential and activation of mtUPR. The ability of AUR to protect against ischemic conditions was further assessed using cells deprived of oxygen and glucose. Pretreatment of these cells with AUR protected against damage to junctional proteins, including occludin, claudin-5, ZO-1 and VE-cadherin, accompanied by a stress resilience response regulated by levels of ATF5, LONP1 and HSP60 mRNAs. Collectively, these results indicate that AUR promotes resilience against oxidative stress and improves junction assembly, suggesting that AUR may help maintain intact barriers in cerebrovascular endothelial cells

    Autoimmune Limbic Encephalitis in Patients with Hematologic Malignancies after Haploidentical Hematopoietic Stem Cell Transplantation with Post-Transplant Cyclophosphamide

    No full text
    Autoimmune limbic encephalitis (LE) is a rare, but devastating complication of allogeneic hematopoietic stem cell transplantation (HSCT). There is currently limited evidence describing the risk factors, laboratory features, and underlying mechanisms of this neurologic adverse event. We retrospectively reviewed available clinical, imaging, and laboratory data from adult patients with hematological malignancies who underwent haploidentical HSCT with post-transplant cyclophosphamide (PTCy) at Chungnam National University Hospital from June 2016 to May 2020. Patients who developed LE were compared to those who did not based on clinical assessment, serum inflammatory biomarkers, and reconstitution of various T cell populations. Of 35 patients, 4 developed LE. There were no differences in patient demographics, donor demographics, or treatment conditions between patients that did and did not develop LE. Overall, patients with LE had worse clinical outcomes and overall survival than those without. In addition, they tended to have higher markers of systemic inflammation in the early post-transplant period, including fever, C-reactive protein (CRP), and cytokines. Remarkably, baseline interleukin-6 levels before HSCT were found to be higher in patients who developed LE than those who did not. In addition, analysis of T cell subsets showed impaired expansion of CD25+FOXP3+ regulatory T (Treg) cells in LE compared to non-LE patients despite appropriate reconstitution of the total CD4+ T cell population. Patients that developed LE within the first 30 days of HSCT were likely to have high serum IL-6 among other inflammatory cytokines coupled with suppression of regulatory T cell differentiation. Further work is needed on the mechanisms underlying impaired Treg expansion following HSCT and potential therapies

    Enhanced Expression of Glycolytic Enzymes and Succinate Dehydrogenase Complex Flavoprotein Subunit A by Mesothelin Promotes Glycolysis and Mitochondrial Respiration in Myeloblasts of Acute Myeloid Leukemia

    No full text
    Acute myeloid leukemia (AML) is an aggressive malignancy characterized by rapid growth and uncontrolled proliferation of undifferentiated myeloid cells. Metabolic reprogramming is commonly observed in the bone marrow of AML patients, as leukemia cells require increased ATP supply to support disease progression. In this study, we examined the potential role of mesothelin as a metabolic modulator in myeloid cells in AML. Mesothelin is a well-known marker of solid tumors that promotes cancer cell proliferation and survival. We initially analyzed alterations in mesothelin expression in the myeloblast subpopulations, defined as SSC-Alow/CD45dim, obtained from the bone marrow of AML patients using flow cytometry. Our results showed overexpression of mesothelin in 34.8% of AML patients. Subsequently, metabolic changes in leukemia cells were evaluated by comparing the oxygen consumption rates (OCR) of bone marrow samples derived from adult AML patients. Notably, a higher OCR was observed in the mesothelin-positive compared to the mesothelin-low and non-expressing groups. Treatment with recombinant human mesothelin protein enhanced OCR and increased the mRNA expression of glycolytic enzymes and mitochondrial complex II in KG1α AML cells. Notably, siRNA targeting mesothelin in KG1α cells led to the reduction of glycolysis-related gene expression but had no effect on the mitochondrial complex gene. The collective results demonstrate that mesothelin induces metabolic changes in leukemia cells, facilitating the acquisition of a rapid supply of ATP for proliferation in AML. Therefore, the targeting of mesothelin presents a potentially promising approach to mitigating the progression of AML through the inhibition of glycolysis and mitochondrial respiration in myeloid cells
    corecore