40 research outputs found

    Effect of Rydberg-atom-based sensor performance on different Rydberg atom population at one atomic-vapor cell

    Full text link
    The atomic-vapor cell is a vital component for Rydberg atomic microwave sensors, and impacts on overall capability of Rydberg sensor. However, the conventional analysis approach on effect of vapor-cell length contains two implicit assumptions, that is, the same atomic population density and buffer gas pressure, which make it unable to accurately capture actual response about effect of Rydberg-atom-based sensor performance on different Rydberg atom population. Here, utilizing a stepped cesium atomic-vapor cell with five different dimensions at the same atomic population density and buffer gas pressure, the height and full width at half maximum of Electromagnetically Induced Transparency(EIT) signal, and the sensitivity of the atomic superheterodyne sensor are comprehensively investigated at the same Rabi frequences(saturated laser power) conditions. It is identified that EIT signal height is proportional to the cell length, full width at half maximum and sensitivity grow with the increment of cell length to a certain extent. Based on the coherent integration signal theory and atomic linear expansion coefficient method, theoretical analysis of the EIT height and sensitivity are further investigated. The results could shed new light on the understanding and design of ultrahigh-sensitivity Rydberg atomic microwave sensors and find promising applications in quantum measurement, communication, and imaging

    Growth and Grain Boundaries in 2D Materials

    No full text

    Wideband wavelength tunable fiber ring laser with flattened output power spectrum

    No full text
    Abstract A wavelength tunable erbium-doped fiber ring laser with flattened output power spectrum over a broadband is proposed and demonstrated. The power flattening is achieved using a high-birefringence fiber loop mirror, in which a number of high-birefringence fiber sections and polarization controllers are used to get a reflection spectrum that can compensate for the output power spectrum. The wavelength tuning is realized by compressing or stretching the FBGs in the laser cavity. A 1 Â 3 switchable fiber Bragg grating array is incorporated into the fiber ring to get a wideband tuning range of 38 nm, from 1527 to 1565 nm. Within this range, the output power uniformity is controlled within AE0:8 dB. The total output power is about 4 dBm, the 3-dB linewidth is 0.01 nm, and the side mode suppression ratio is more than 48 dB.

    Plants as Factories for Human Pharmaceuticals: Applications and Challenges

    No full text
    Plant molecular farming (PMF), defined as the practice of using plants to produce human therapeutic proteins, has received worldwide interest. PMF has grown and advanced considerably over the past two decades. A number of therapeutic proteins have been produced in plants, some of which have been through pre-clinical or clinical trials and are close to commercialization. Plants have the potential to mass-produce pharmaceutical products with less cost than traditional methods. Tobacco-derived antibodies have been tested and used to combat the Ebola outbreak in Africa. Genetically engineered immunoadhesin (DPP4-Fc) produced in green plants has been shown to be able to bind to MERS-CoV (Middle East Respiratory Syndrome), preventing the virus from infecting lung cells. Biosafety concerns (such as pollen contamination and immunogenicity of plant-specific glycans) and costly downstream extraction and purification requirements, however, have hampered PMF production from moving from the laboratory to industrial application. In this review, the challenges and opportunities of PMF are discussed. Topics addressed include; transformation and expression systems, plant bioreactors, safety concerns, and various opportunities to produce topical applications and health supplements

    Nattokinase: An Oral Antithrombotic Agent for the Prevention of Cardiovascular Disease

    No full text
    Natto, a fermented soybean product, has been consumed as a traditional food in Japan for thousands of years. Nattokinase (NK), a potent blood-clot dissolving protein used for the treatment of cardiovascular diseases, is produced by the bacterium Bacillus subtilis during the fermentation of soybeans to produce Natto. NK has been extensively studied in Japan, Korea, and China. Recently, the fibrinolytic (anti-clotting) capacity of NK has been recognized by Western medicine. The National Science Foundation in the United States has investigated and evaluated the safety of NK. NK is currently undergoing a clinical trial study (Phase II) in the USA for atherothrombotic prevention. Multiple NK genes have been cloned, characterized, and produced in various expression system studies. Recombinant technology represents a promising approach for the production of NK with high purity for its use in antithrombotic applications. This review covers the history, benefit, safety, and production of NK. Opportunities for utilizing plant systems for the large-scale production of NK, or for the production of edible plants that can be used to provide oral delivery of NK without extraction and purification are also discussed

    Continuous True-Time-Delay Beamforming Employing a Multiwavelength Tunable Fiber Laser Source

    No full text
    Abstract-A true-time-delay system for wideband continuous phased array beamforming employing a novel multiwavelength tunable fiber laser source with equally increased or decreased wavelength spacing is proposed. The wavelength tuning is realized by stretching or compressing the fiber Bragg gratings cascaded in the laser cavity. To ensure a wavelength tuning with equally increased or decreased wavelength spacing, the gratings are mounted onto a plastic plate with angles between adjacent gratings selected such that the forces applied to the gratings has an equal force increment. Time delays with equally increased or decreased time delay difference for the equally spaced wavelengths are obtained when the modulated lightwaves are reflected at different locations of a linearly chirped grating. A four-channel chirped grating based true-time-delay system using the proposed light source has been constructed and experimented. Equally increased or decreased time delays are obtained when the wavelengths are tuned

    Effect of Soluble Salt Loss via Spring Water on Irrigation-Induced Landslide Deformation

    No full text
    Landslide exposes the previously blocked groundwater discharge. High concentrations of soluble salt form salt sinters that can be observed near discharge passages. Based on existing laboratory investigation results of soil leaching and shearing reported in the literature, the effect of the soluble salt loss via spring water on irrigation-induced landslide deformation was studied under large-scale conditions. During our field investigation of landslides in the Heitai terrace of the Yellow River’s upper reaches in Gansu Province, China, 35 spring outlets were found, and the Heitai terrace was divided into five subareas, based on the difference in spring flow. Deformation data for the terrace were obtained by small baseline subset technology (SBAS-InSAR). These data were analyzed in combination with the amount of soluble salt loss, to explore the correlation between the deformation of the landslide and the soluble salt loss in the loess irrigation area. The results showed that the cumulative deformation and the loss of soluble salt were increasing continuously in the terrace. Although the increasing intensity of each subarea was different, the changing intensity of the two during the corresponding monitoring period was highly consistent. The statistical analysis revealed a strong positive correlation between the accumulated loss of soluble salt via spring water and the accumulated displacement of the terrace edge (p < 0.01). After the slope k between the two was tested by the Grubbs test and t-test, the k was no abnormality (α = 0.05) and difference (Sig > 0.05), further providing the basis for confirming the existence of this positive correlation. When the loss of soluble salt in rock and soil increased gradually, the accumulated deformation of the terrace edge also increased continuously. The findings of this study are of great significance for understanding the formation mechanism of landslides and the identifying landslide revival in irrigation areas of the Loess Plateau

    Trap Distribution and Breakdown Characteristics of Direct-Fluorinated PI Film for DC-HTSFCL

    No full text
    corecore