21 research outputs found

    The clinical and biological implications of the focal adhesion kinase pathway in ShenLingLan mediated suppression of cellular migration of ovarian cancer cells

    Get PDF
    The incidence of ovarian cancer in the UK has increased by almost twenty percent since the 1970’s and the majority of cases are not diagnosed until the late stages, when metastasis is more likely to have occurred. Focal Adhesion Kinase (FAK) is one of the key protein complexes which is integral to cell migration and has been linked to a variety of solid tumours. ShenLingLan (SLDM) is a traditional herbal medicine which has been formulated for the treatment of solid tumours. This study aimed to establish the impact of SLDM on FAK in ovarian cancer cells in vitro and transcript levels of FAK in an ovarian cancer cohort. FAK and paxillin phosphorylation events stimulated by SLDM treatment were identified using a Kinexus™ antibody based protein array. The impact of SLDM on cell attachment and migration was evaluated using Electric cell-substrate impedance sensing (ECIS), whilst the changes in focal adhesion complex localisation were assessed using immunofluorescence. In an ovarian cancer cohort, differences in FAK and paxillin transcript levels were assessed against key clinical parameters such as differentiation, stage and survival outcome. SLDM treatment of ovarian cancer cells in vitro resulted in the suppression of FAK and paxillin phosphorylation at several sites, which appeared to manifest as decreased cellular attachment and migration in a range of immortalised ovarian cancer cells. Increased FAK and paxillin transcript copies were observed in high grade and poorly differentiated ovarian tumours as well as in tumours from patients with ovarian cancer related incidence. SLDM has a profound effect on the migratory and adhesive properties of ovarian cancer cells, potentially via inhibitory effects on the activation of the FAK pathway, which is aberrant in clinical ovarian cancers

    ShenLingLan influences the attachment and migration of ovarian cancer cells potentially through the GSK3 pathway

    Get PDF
    Background: Ovarian cancer presents a major clinical challenge in the UK. Glycogen synthase kinase-3 (GSK-3) has been linked to cancer. This study tested the impact of ShenLingLan (SLDM) on ovarian cancer cell behaviour and its links to GSK-3. Methods: Fresh ovarian tumours (n = 52) were collected and processed. Histopathologcial and clinical information were collected and analysed against GSK-3 transcript levels using quantitative PCR (qPCR). Immortalised ovarian cancer cells’ protein alterations in response to SLDM were identified using a Kinexus™ protein kinase array. The effects of SLDM and a combination of SLDM and TWS119 on ovarian cancer cells ability to attach and migrate were evaluated using electrical cell-substrate impedance sensing (ECIS). Results: Transcript expression of GSK-3β was significantly increased in ovarian tumours which were poorly differentiated, patients with recurrence and in patients who had died from ovarian cancer. Treating SKOV-3 ovarian cells with SLDM reduced GSK-3 expression and GSK-3α (Y279). Treatment with SLDM reduced ovarian cancer cells ability to attach and migrate, which was further reduced in the presence of TWS119. Conclusions: This study identified a potential mechanism by which SLDM may exert anti-metastatic effects. Further work is needed to investigate the in vivo effects SLDM has on ovarian tumours

    Modification Methods and Applications of CNTs/WPU Composite Material

    No full text
    Carbon nanotubes have lots of good properties, and occupy a great position in the field of science today. However, they also have some disadvantages, such as the existence of Van der Waals forces between the nanotubes bundle, which can result the attraction between the bundles and finally will cause more serious agglomeration. So researchers make the CNTs and WPU into the composite via solution blending, melt blending and in situ polymerization, in order to give play to the excellent properties of the two materials. This paper is aimed at summarizing various modification methods of CNTs/WPU composite material in the current research status and show the effects after each modification method. Finally, it can be concluded that there were differences between composites and the results of modification methods were affected

    Comparison of the vaginal microbiota diversity of women with and without human papillomavirus infection: a cross-sectional study

    Get PDF
    BACKGROUND: The female genital tract is an important bacterial habitat of the human body, and vaginal microbiota plays a crucial role in vaginal health. The alteration of vaginal microbiota affects millions of women annually, and is associated with numerous adverse health outcomes, including human papillomavirus (HPV) infection. However, previous studies have primarily focused on the association between bacterial vaginosis and HPV infection. Little is known about the composition of vaginal microbial communities involved in HPV acquisition. The present study was performed to investigate whether HPV infection was associated with the diversity and composition of vaginal microbiota. METHODS: A total of 70 healthy women (32 HPV-negative and 38 HPV-positive) with normal cervical cytology were enrolled in this study. Culture-independent polymerase chain reaction-denaturing gradient gel electrophoresis was used to measure the diversity and composition of vaginal microbiota of all subjects. RESULTS: We found significantly greater biological diversity in the vaginal microbiota of HPV-positive women (p < 0.001). Lactobacillus, including L. gallinarum, L. iners and L. gasseri, was the predominant genus and was detected in all women. No significant difference between HPV-positive and HPV-negative women was found for the frequency of detection of L. gallinarum (p = 0.775) or L. iners (p = 0.717), but L. gasseri was found at a significantly higher frequency in HPV-positive women (p = 0.005). Gardnerella vaginalis was also found at a significantly higher frequency in HPV-positive women (p = 0.031). Dendrograms revealed that vaginal microbiota from the two groups had different profiles. CONCLUSIONS: Our study is the first systematic evaluation of an association between vaginal microbiota and HPV infection, and we have demonstrated that compared with HPV-negative women, the bacterial diversity of HPV-positive women is more complex and the composition of vaginal microbiota is different

    Pegylated Liposomal Doxorubicin as a Single Agent or as Combination Therapy with Carboplatin in Patients with Recurrent or Refractory Epithelial Ovarian Cancer

    No full text
    OBJECTIVE Pegylated liposomal doxorubicin (PLD; CAELYX®), a novel formulation of doxorubicin with enhanced therapeutic efficacy and reduced toxicity, has demonstrated improved progression-free survival in recurrent or refractory ovarian cancer. The objective of this open-label, non comparative, observational study was to determine the effi cacy and safety of PLD monotherapy or combination therapy with carboplatin for patients with recurrent or refractory ovarian cancer.METHODS Sixty-two patients with recurrent or refractory ovarian cancer who completed a platinum-based chemotherapy regimen and demonstrated platinum sensitivity for first-line treatment at least 6 months prior to study entry were enrolled in 20 centers in China. PLD was given as monotherapy (50 mg/m2 infused over 60 minutes) or as combination therapy (30 mg/m21-hour infusion) with carboplatin (area under the curve 5 mg·min/mL 1-hour infusion) on day 1 every 28 days for 4 cycles. The primary endpoint was objective response (OR) rate or CA-125 level. Secondary endpoints included time to response, time-to-progression, health-related quality of life, and safety. RESULTS Overall, 48% of the 62 evaluable patients achieved a confirmed OR. More patients receiving PLD and carboplatin achieved an OR vs the PLD monotherapy group (63% vs. 37%). The median time to response and disease progression was 58.5 days and 56.0 days, respectively. Overall and drug-related adverse events were reported for 39% and 34%, respectively. The most commonly reported adverse events were stomatitis (22.6%) and palmar-plantar erythroderma (9.7%). Two deaths were reported.CONCLUSION PLD is an e ff ective and well tolerated agent in women with recurrent or refractory epithelial ovarian cancer

    Research on Three-Dimensional Electronic Navigation Chart Hybrid Spatial Index Structure Based on Quadtree and R-Tree

    No full text
    The three-dimensional (3D) visualization of the electronic navigation chart (ENC) can reflect the marine environment and various marine features truly, accurately, and directly, to reduce misoperation during chart use and improve the convenience of using the chart. Due to a large amount of ENC data, complex data structure, and uneven distribution in 3D space, the construction and real-time rendering of 3D ENCs depend on the retrieval speed of 3D spatial data. Improving the spatial retrieval efficiency of 3D ENC data is helpful for the rapid rendering of a 3D scene. In this paper, based on the S-100 universal hydrological data model (S-100) and the 3D characteristics to classify the ENC features and create the 3D ENC data set, a hybrid spatial index structure is proposed based on quadtree and R-tree and ENC features data structure, using the smallest minimum bounding box (SMBB) and classification retrieval methods to optimize the spatial index structure. All the ENC features are rendered in a 3D marine scene. By analyzing the overlap of ENC features and testing the efficiency of spatial index structure, the results show that this method can effectively reduce the overlap rate of index nodes and improve the efficiency of data retrieval, realize the effective management of 3D ENC data, and improve the drawing speed of 3D ENCs

    Learning to Sense: Deep Learning for Wireless Sensing with Less Training Efforts

    No full text

    A real-world study of treatment patterns following disease progression in epithelial ovarian cancer patients undergoing poly-ADP-ribose polymerase inhibitor maintenance therapy

    No full text
    Abstract Background The efficacy of subsequent therapy after poly-ADP-ribose polymerase (PARP) inhibitor maintenance treatment has raised concerns. Retrospective studies show worse outcomes for platinum-based chemotherapy after progression of PARP inhibitor-maintenance therapy, especially in BRCA-mutant patients. We aimed to describe subsequent therapy in ovarian cancer patients after PARP inhibitor-maintenance therapy and evaluate their response to treatment. We focused on chemotherapy for patients with a progression-free interval (PFI) of ≥ 6 months after prior platinum treatment, based on BRCA status. Methods We analyzed real-world data from Peking University Cancer Hospital, subsequent therapy after progression to PARP inhibitor-maintenance therapy for epithelial ovarian cancer between January 2016 and December 2022. Clinicopathological characteristics and treatment outcomes were extracted from medical records. The last follow-up was in May 2023. Results A total of 102 patients were included, of which 29 (28.4%) had a germline BRCA1/2 mutation and 73 (71.6%) exhibited BRCA1/2 wild-type mutations. The PARP inhibitors used were Olaparib (n = 62, 60.8%), Niraparib (n = 35, 34.3%), and others (n = 5, 4.9%). The overall response rate (ORR) was 41.2%, and the median time to second progression (mTTSP) was 8.1 months (95%CI 5.8–10.2). Of 91 platinum-sensitive patients (PFI ≥ 6 months) after progression to PARP inhibitor-maintenance therapy, 65 patients subsequently received platinum regimens. Among them, 30 had received one line of chemotherapy before PARP inhibitor-maintenance therapy. Analysis of these 30 patients by BRCA status showed an ORR of 16.7% versus 33.3% and mTTSP of 7.1 (95% CI 4.9–9.1) versus 6.2 months (95% CI 3.7–8.3, P = 0.550), for BRCA-mutant and wild-type patients, respectively. For the remaining 35 patients who had received two or more lines of chemotherapy before PARP inhibitor-maintenance therapy, ORR was 57.1% versus 42.9%, and mTTSP was 18.0 (95% CI 5.0–31.0) versus 8.0 months (95% CI 4.9–11.1, P = 0.199), for BRCA-mutant and wild-type patients, respectively. Conclusion No differences in survival outcomes were observed among patients with different BRCA statuses. Furthermore, for patients who had undergone two or more lines of chemotherapy before PARP inhibitor maintenance therapy, no negative effects of PARP inhibitors on subsequent treatment were found, regardless of BRCA status

    Device-Free Identification Using Intrinsic CSI Features

    No full text

    Nuclear accumulation of UBC9 contributes to SUMOylation of lamin A/C and nucleophagy in response to DNA damage

    No full text
    Abstract Background Macroautophagy (hereafter referred to as autophagy) is an evolutionarily conserved intracellular mechanism for lysosomal degradation of damaged cellular components. The specific degradation of nuclear components by the autophagy pathway is called nucleophagy. Most studies have focused on autophagic turnover of cytoplasmic materials, and little is known about the role of autophagy in the degradation of nuclear components. Methods Human MDA-MB-231 and MCF-7 breast cancer cell lines were used as model systems in vitro. Induction of nucleophagy by nuclear DNA leakage was determined by western blot and immunofluorescence analyses. The interaction and colocalization of LC3 and lamin A/C was determined by immunoprecipitation and immunofluorescence. The role of the SUMO E2 ligase, UBC9, on the regulation of SUMOylation of lamin A/C and nucleophagy was determined by siRNA silencing of UBC9, and analyzed by immunoprecipitation and immunofluorescence. Results DNA damage induced nuclear accumulation of UBC9 ligase which resulted in SUMOylation of lamin A/C and that SUMOylation of this protein was required for the interaction between the autophagy protein LC3 and lamin A/C, which was required for nucleophagy. Knockdown of UBC9 prevented SUMOylation of lamin A/C and LC3-lamin A/C interaction. This attenuated nucleophagy which degraded nuclear components lamin A/C and leaked nuclear DNA mediated by DNA damage. Conclusions Our findings suggest that nuclear DNA leakage activates nucleophagy through UBC9-mediated SUMOylation of lamin A/C, leading to degradation of nuclear components including lamin A/C and leaked nuclear DNA
    corecore