402 research outputs found

    Robust D-wave Pairing Correlations in a Hole-Doped Spin-Fermion Model for Cuprates

    Full text link
    Pairing Correlations are studied numerically in the hole-doped spin-fermion model for cuprates. Simulations performed on up to 12x12 clusters provide robust indications of D-wave superconductivity away from half-filling. The pairing correlations are the strongest in the direction perpendicular to the dynamic stripe-like inhomogeneities that appear in the ground state at some densities. An optimal doping, where the correlations reach a maximum value, was observed at about 25% doping, in qualitative agreement with hight T_{c} cuprates' experiments. On the other hand, pairing correlations are suppressed by static stripe inhomogeneities.Comment: 4 pages, 4 figure

    Pseudogap Formation in Models for Manganites

    Full text link
    The density-of-states (DOS) and one-particle spectral function A(k,ω)\rm A({\bf k}, \omega) of the one- and two-orbital models for manganites, the latter with Jahn-Teller phonons, are evaluated using Monte Carlo techniques. Unexpectedly robust pseudogap (PG) features were found at low- and intermediate-temperatures, particularly at or near regimes where phase-separation occurs as T\rm T→\to0. The PG follows the chemical potential and it is caused by the formation of ferromagnetic metallic clusters in an insulating background. It is argued that PG formation should be generic of mixed-phase regimes. The results are in good agreement with recent photoemission experiments for La1.2Sr1.8Mn2O7\rm La_{1.2} Sr_{1.8} Mn_2 O_7.Comment: Accepted for publication in Phys. Rev. Lett., 4 pages, Revtex, with 4 figures embedde

    Developing Cloud Chambers with High School Students

    Full text link
    The result and outcome of the \textit{cloud chamber project}, which aims to develop a cloud chamber useful for science education is reported in detail. A project includes both three high school students and a teacher as a part of Super Science High School (SSH) program in our school. We develop a dry-ice-free cloud chamber using salt and ice (or snow). Technical details of the chamber are described. We also argue how the project have affected student's cognition, motivation, academic skills and behavior. The research project has taken steps of professional researchers, i.e., in planning research, applying fund, writing a paper and giving a talk in conferences. From interviews with students, we have learnt that such style of scientific activity is very effective in promoting student's motivation for learning science.Comment: 9 pages, accepted to the proceedings of APPC12 - the 12th Asia Pacific Physics Conferenc

    Origin of the multiferroic spiral spin-order in the RMnO3 perovskites

    Full text link
    The origin of the spiral spin-order in perovskite multiferroic manganites RRMnO3_{3} (RE=RE= Tb or Dy) is here investigated using a two ege_{\rm g}-orbitals double-exchange model. Our main result is that the experimentally observed spiral phase can be stabilized by introducing a relatively weak next-nearest-neighbor superexchange coupling (∼10\sim10% of the nearest-neighbor superexchange). Moreover, the Jahn-Teller lattice distortion is also shown to be essential to obtain a realistic spiral period. Supporting our conclusions, the generic phase diagram of undoped perovskite manganites is obtained using Monte Carlo simulations, showing phase transitions from the A-type antiferromagnet, to the spiral phase, and finally to the E-type antiferromagnet, with decreasing size of the RR ions. These results are qualitatively explained by the enhanced relative intensity of the superexchanges.Comment: 6 pages, 4 figure

    Ferromagnetic tendency at the surface of CE charge-ordered manganites

    Full text link
    Most previous investigations have shown that the surface of a ferromagnetic material may have antiferromagnetic tendencies. However, experimentally the opposite effect has been recently observed: ferromagnetism appears in some nano-sized manganites with a composition such that the antiferromagnetic charge-ordered CE state is observed in the bulk. A possible origin is the development of ferromagnetic correlations at the surface of these small systems. To clarify these puzzling experimental observations, we have studied the two-orbital double-exchange model near half-doping n=0.5, using open boundary conditions to simulate the surface of either bulk or nano-sized manganites. Considering the enhancement of surface charge density due to a possible AO termination (A = trivalent/divalent ion composite, O = oxygen), an unexpected surface phase-separated state emerges when the model is studied using Monte Carlo techniques on small clusters. This tendency suppresses the CE charge ordering and produces a weak ferromagnetic signal that could explain the experimental observations.Comment: 8 pages, 5 figure
    • …
    corecore