304 research outputs found

    Learning High-Level Policies for Model Predictive Control

    Full text link
    The combination of policy search and deep neural networks holds the promise of automating a variety of decision-making tasks. Model Predictive Control~(MPC) provides robust solutions to robot control tasks by making use of a dynamical model of the system and solving an optimization problem online over a short planning horizon. In this work, we leverage probabilistic decision-making approaches and the generalization capability of artificial neural networks to the powerful online optimization by learning a deep high-level policy for the MPC~(High-MPC). Conditioning on robot's local observations, the trained neural network policy is capable of adaptively selecting high-level decision variables for the low-level MPC controller, which then generates optimal control commands for the robot. First, we formulate the search of high-level decision variables for MPC as a policy search problem, specifically, a probabilistic inference problem. The problem can be solved in a closed-form solution. Second, we propose a self-supervised learning algorithm for learning a neural network high-level policy, which is useful for online hyperparameter adaptations in highly dynamic environments. We demonstrate the importance of incorporating the online adaption into autonomous robots by using the proposed method to solve a challenging control problem, where the task is to control a simulated quadrotor to fly through a swinging gate. We show that our approach can handle situations that are difficult for standard MPC

    Flymation: Interactive Animation for Flying Robots

    Full text link
    Trajectory visualization and animation play critical roles in robotics research. However, existing data visualization and animation tools often lack flexibility, scalability, and versatility, resulting in limited capability to fully explore and analyze flight data. To address this limitation, we introduce Flymation, a new flight trajectory visualization and animation tool. Built on the Unity3D engine, Flymation is an intuitive and interactive tool that allows users to visualize and analyze flight data in real time. Users can import data from various sources, including flight simulators and real-world data, and create customized visualizations with high-quality rendering. With Flymation, users can choose between trajectory snapshot and animation; both provide valuable insights into the behavior of the underlying autonomous system. Flymation represents an exciting step toward visualizing and interacting with large-scale data in robotics research.Comment: This work was presented at Workshop at ICRA 2023 ( The Role of Robotics Simulators for Unmanned Aerial Vehicles

    Policy Search for Model Predictive Control with Application for Agile Drone Flight

    Full text link

    Contrastive Initial State Buffer for Reinforcement Learning

    Full text link
    In Reinforcement Learning, the trade-off between exploration and exploitation poses a complex challenge for achieving efficient learning from limited samples. While recent works have been effective in leveraging past experiences for policy updates, they often overlook the potential of reusing past experiences for data collection. Independent of the underlying RL algorithm, we introduce the concept of a Contrastive Initial State Buffer, which strategically selects states from past experiences and uses them to initialize the agent in the environment in order to guide it toward more informative states. We validate our approach on two complex robotic tasks without relying on any prior information about the environment: (i) locomotion of a quadruped robot traversing challenging terrains and (ii) a quadcopter drone racing through a track. The experimental results show that our initial state buffer achieves higher task performance than the nominal baseline while also speeding up training convergence

    Autonomous Drone Racing with Deep Reinforcement Learning

    Full text link
    In many robotic tasks, such as drone racing, the goal is to travel through a set of waypoints as fast as possible. A key challenge for this task is planning the minimum-time trajectory, which is typically solved by assuming perfect knowledge of the waypoints to pass in advance. The resulting solutions are either highly specialized for a single-track layout, or suboptimal due to simplifying assumptions about the platform dynamics. In this work, a new approach to minimum-time trajectory generation for quadrotors is presented. Leveraging deep reinforcement learning and relative gate observations, this approach can adaptively compute near-time-optimal trajectories for random track layouts. Our method exhibits a significant computational advantage over approaches based on trajectory optimization for non-trivial track configurations. The proposed approach is evaluated on a set of race tracks in simulation and the real world, achieving speeds of up to 17 m/s with a physical quadrotor

    The influence of additive content on microstructure and mechanical properties on the Csf/SiC composites after annealed treatment

    Get PDF
    AbstractIn this paper, micrometers long and 20–100nm diameter SiC nanowires had been synthesized in the short cut fiber toughened SiC composites (Csf/SiC) by annealing treatment. The present work demonstrated that it was possible to fabricate the in situ SiC nanowires toughened Csf/SiC composites by annealed treatment. The “vapor–liquid–solid” growth mechanism of the SiC nanowires was proposed. The mainly toughened mechanism concluded grain bridging, crack deflection, fiber debonding and SiC nanowires, which can improve fracture toughness

    Learning Minimum-Time Flight in Cluttered Environments

    Full text link
    We tackle the problem of minimum-time flight for a quadrotor through a sequence of waypoints in the presence of obstacles while exploiting the full quadrotor dynamics. Early works relied on simplified dynamics or polynomial trajectory representations that did not exploit the full actuator potential of the quadrotor, and, thus, resulted in suboptimal solutions. Recent works can plan minimum-time trajectories; yet, the trajectories are executed with control methods that do not account for obstacles. Thus, a successful execution of such trajectories is prone to errors due to model mismatch and in-flight disturbances. To this end, we leverage deep reinforcement learning and classical topological path planning to train robust neural-network controllers for minimum-time quadrotor flight in cluttered environments. The resulting neural network controller demonstrates significantly better performance of up to 19% over state-of-the-art methods. More importantly, the learned policy solves the planning and control problem simultaneously online to account for disturbances, thus achieving much higher robustness. As such, the presented method achieves 100% success rate of flying minimum-time policies without collision, while traditional planning and control approaches achieve only 40%. The proposed method is validated in both simulation and the real world

    Contrastive Learning for Enhancing Robust Scene Transfer in Vision-based Agile Flight

    Full text link
    Scene transfer for vision-based mobile robotics applications is a highly relevant and challenging problem. The utility of a robot greatly depends on its ability to perform a task in the real world, outside of a well-controlled lab environment. Existing scene transfer end-to-end policy learning approaches often suffer from poor sample efficiency or limited generalization capabilities, making them unsuitable for mobile robotics applications. This work proposes an adaptive multi-pair contrastive learning strategy for visual representation learning that enables zero-shot scene transfer and real-world deployment. Control policies relying on the embedding are able to operate in unseen environments without the need for finetuning in the deployment environment. We demonstrate the performance of our approach on the task of agile, vision-based quadrotor flight. Extensive simulation and real-world experiments demonstrate that our approach successfully generalizes beyond the training domain and outperforms all baselines
    • …
    corecore