4 research outputs found
Recent Developments and Prospects of M13- Bacteriophage Based Piezoelectric Energy Harvesting Devices
Recently, biocompatible energy harvesting devices have received a great deal of attention for biomedical applications. Among various biomaterials, viruses are expected to be very promising biomaterials for the fabrication of functional devices due to their unique characteristics. While other natural biomaterials have limitations in mass-production, low piezoelectric properties, and surface modification, M13 bacteriophages (phages), which is one type of virus, are likely to overcome these issues with their mass-amplification, self-assembled structure, and genetic modification. Based on these advantages, many researchers have started to develop virus-based energy harvesting devices exhibiting superior properties to previous biomaterial-based devices. To enhance the power of these devices, researchers have tried to modify the surface properties of M13 phages, form biomimetic hierarchical structures, control the dipole alignments, and more. These methods for fabricating virus-based energy harvesting devices can form a powerful strategy to develop high-performance biocompatible energy devices for a wide range of practical applications in the future. In this review, we discuss all these issues in detail
Humoral and Cellular Responses to COVID-19 Vaccines in SARS-CoV-2 Infection-Naïve and -Recovered Korean Individuals
In the face of a global COVID-19 vaccine shortage, an efficient vaccination strategy is required. Therefore, the immunogenicity of single or double COVID-19 vaccination doses (ChAdOX1, BNT162b2, or mRNA-1273) of SARS-CoV-2-recovered individuals was compared to that of unvaccinated individuals with SARS-CoV-2 infection at least one year post-convalescence. Moreover, the immunogenicity of SARS-CoV-2-naïve individuals vaccinated with a complete schedule of Ad26.CoV2.S, ChAdOX1, BNT162b2, mRNA-1273, or ChAdOX1/BNT162b2 vaccines was evaluated. Anti-SARS-CoV-2 S1 IgG antibody (S1-IgG), pseudotyped virus-neutralizing antibody titer (pVNT50), and IFN-γ ELISpot counts were measured. Humoral immune responses were significantly higher in vaccinated than in unvaccinated recovered individuals, with a 43-fold increase in the mean pVNT50 values. However, there was no significant difference in the pVNT50 and IFN-γ ELISpot values between the single- and double-dose regimens. In SARS-CoV-2-naïve individuals, antibody responses varied according to the vaccine type: BNT162b2 and mRNA-1273 induced similar levels of S1-IgG to those observed in vaccinated, convalescent individuals; in contrast, pVNT50 was much lower in SARS-CoV-2-naïve vaccinees than in vaccinated recovered individuals. Therefore, a single dose of ChAdOX1, BNT162b2, or mRNA-1273 vaccines would be a good alternative for recovered individuals instead of a double-dose regimen