19 research outputs found

    Tribological properties of attapulgite/La2O3 nanocomposite as lubricant additive for a steel/steel contact

    No full text
    Attapulgite is a layered silicate with good friction-reduction and self-repairing properties. In order to further improve its tribological properties, the present work mainly focuses on the preparation of attapulgite/La2O3 nanocomposite and study on its tribological behaviors. The tribological properties of mineral lubricating oil (150SN) containing attapulgite/La2O3 nanocomposite were investigated through an Optimal SRV-IV oscillating friction and wear tester. The rubbing surfaces and generated tribofilms were characterized by SEM, EDS, XPS and nanoindentation. Results indicated that the friction-reducing ability and antiwear property of the oil were both remarkably improved by attapulgite/La2O3 nanocomposite. A tribofilm mainly composed of Fe, Fe3C, FeO, Fe2O3 , FeOOH, SiO, SiO2 and organic compound was formed on the rubbing surface under the lubrication of oil with attapulgite/La2O3 nanocomposite. The tribofilm possess excellent self-lubricating ability and mechanical properties, which is responsible for the reduction of friction and wear

    Effects of Microcystin-LR Exposure on Spermiogenesis in Nematode Caenorhabditis elegans

    No full text
    Little is known about the effect on spermiogenesis induced by microcystin-leucine arginine (MC-LR), even though such data are very important to better elucidate reproductive health. In the current work, with the aid of nematode Caenorhabditis elegans (C. elegans) as an animal model, we investigated the defects on spermiogenesis induced by MC-LR. Our results showed that MC-LR exposure induced sperm morphology abnormality and caused severe defects of sperm activation, trans-activation, sperm behavior and competition. Additionally, the expression levels of spe-15 were significantly decreased in C. elegans exposed to MC-LR lower than 16.0 μg/L, while the expression levels of spe-10 and fer-1 could be significantly lowered in C. elegans even exposed to 1.0 μg/L of MC-LR. Therefore, the present study reveals that MC-LR can induce adverse effects on spermiogenesis, and those defects of sperm functions may be induced by the decreases of spe-10, spe-15 and fer-1 gene expressions in C. elegans

    Pollutant Removal and Energy Recovery from Swine Wastewater Using Anaerobic Membrane Bioreactor: A Comparative Study with Up-Flow Anaerobic Sludge Blanket

    No full text
    Due to its high content of organics and nutrients, swine wastewater has become one of the main environment pollution sources. Exploring high-efficient technologies for swine wastewater treatment is urgent and becoming a hot topic in the recent years. The present study introduces anaerobic membrane bioreactor (AnMBR) for efficient treatment of swine wastewater, compared with up-flow anaerobic sludge blanket (UASB) as a traditional system. Pollutant removal performance, methanogenic properties, and microbial community structures were investigated in both reactors. Results showed that by intercepting particulate organics, AnMBR achieved stable and much higher chemical oxygen demand (COD) removal rate (approximately 90%) than UASB (around 60%). Due to higher methanogenic activity of anaerobic sludge, methane yield of AnMBR (0.23 L/g-COD) was higher than that of UASB. Microbial community structure analysis showed enrichment of functional bacteria that can remove refractory organic matter in the AnMBR, which promoted the organics conversion processes. In addition, obvious accumulation of acetotrophic and hydrotrophic methanogens in AnMBR system was recorded, which could broaden the organic matter degradation pathways and the methanogenesis processes, ensuring a higher methane yield. Through energy balance analysis, results concluded that the net energy recovery efficiency of AnMBR was higher than that of UASB system, indicating that applying AnMBR for livestock wastewater treatment could not only efficiently remove pollutants, but also significantly enhance the energy recovery

    Serum levels of uric acid may have a potential role in the management of immediate delivery or prolongation of pregnancy in severe preeclampsia

    No full text
    Objective To investigate the biomarker(s) that could affect the decision for immediate or delayed delivery in severe preeclampsia. Methods Data on serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), creatinine, blood urea nitrogen (BUN), uric acid (UA) and platelet counts from 134 cases were collected and analysed. Results Higher UA levels were seen in case with immediate delivery. Higher stillbirth was seen in cases with delayed delivery. Conclusion UA levels could be a potential management biomarker for immediate or delayed delivery in severe preeclampsia. However, the higher risk of stillbirth must be considered in delayed delivery

    Pollutant Removal and Energy Recovery from Swine Wastewater Using Anaerobic Membrane Bioreactor: A Comparative Study with Up-Flow Anaerobic Sludge Blanket

    No full text
    Due to its high content of organics and nutrients, swine wastewater has become one of the main environment pollution sources. Exploring high-efficient technologies for swine wastewater treatment is urgent and becoming a hot topic in the recent years. The present study introduces anaerobic membrane bioreactor (AnMBR) for efficient treatment of swine wastewater, compared with up-flow anaerobic sludge blanket (UASB) as a traditional system. Pollutant removal performance, methanogenic properties, and microbial community structures were investigated in both reactors. Results showed that by intercepting particulate organics, AnMBR achieved stable and much higher chemical oxygen demand (COD) removal rate (approximately 90%) than UASB (around 60%). Due to higher methanogenic activity of anaerobic sludge, methane yield of AnMBR (0.23 L/g-COD) was higher than that of UASB. Microbial community structure analysis showed enrichment of functional bacteria that can remove refractory organic matter in the AnMBR, which promoted the organics conversion processes. In addition, obvious accumulation of acetotrophic and hydrotrophic methanogens in AnMBR system was recorded, which could broaden the organic matter degradation pathways and the methanogenesis processes, ensuring a higher methane yield. Through energy balance analysis, results concluded that the net energy recovery efficiency of AnMBR was higher than that of UASB system, indicating that applying AnMBR for livestock wastewater treatment could not only efficiently remove pollutants, but also significantly enhance the energy recovery

    Engineering the thermostability of d-lyxose isomerase from Caldanaerobius polysaccharolyticus via multiple computer-aided rational design for efficient synthesis of d-mannose

    No full text
    d-Mannose is an attractive functional sugar that exhibits many physiological benefits on human health. The demand for low-calorie sugars and sweeteners in foods are increasingly available on the market. Some sugar isomerases, such as d-lyxose isomerase (d-LIase), can achieve an isomerization reaction between d-mannose and d-fructose. However, the weak thermostability of d-LIase limits its efficient conversion from d-fructose to d-mannose. Nonetheless, few studies are available that have investigated the molecular modification of d-LIase to improve its thermal stability. In this study, computer-aided tools including FireProt, PROSS, and Consensus Finder were employed to jointly design d-LIase mutants with improved thermostability for the first time. Finally, the obtained five-point mutant M5 (N21G/E78P/V58Y/C119Y/K170P) showed high thermal stability and catalytic activity. The half-life of M5 at 65 °C was 10.22 fold, and the catalytic efficiency towards 600 g/L of d-fructose was 2.6 times to that of the wild type enzyme, respectively. Molecular dynamics simulation and intramolecular forces analysis revealed a thermostability mechanism of highly rigidity conformation, newly formed hydrogen bonds and π-cation interaction between and within protein domains, and redistributed surface electrostatic charges for the mutant M5. This research provided a promising d-LIase mutant for the industrial production of d-mannose from d-fructose

    The neuropathological mechanism of EV-A71 infection attributes to inflammatory pryoptosis and viral replication via activating the hsa_circ_0045431/ hsa_miR_584/NLRP3 regulatory axis

    No full text
    Neuropathological damage has been considered to be the main cause of death from EV-A71 infection, but the underlying mechanism has not been elucidated. Pyroptosis, a new form of inflammatory programmed cell death, has been verified to be involved in the pathogenesis of various viruses. circRNAs are a novel type of endogenous noncoding RNA gaining research interest in recent years, especially their special roles in the process of virus infection. Thus, in this study, we combined EV-A71, pyroptosis and circRNA to find a breakthrough in the pathogenesis of EV-A71 infection. Firstly, whether EV-A71 infection leaded to pyroptosis formation was examined by a series detection of cell death, cell viability, LDH release, caspase 1 activity, the expression levels of pyroptosis-related molecules and the concentrations of IL-1β and IL-18. Secondly, high-throughput sequencing of circRNAs was carried out to excavate the circRNA-miRNA-mRNA regulatory axis which might be associated with pyroptosis formation. Finally, the gain- and loss-of-functional experiments were further conducted to identify their functions. Our results showed that EV-A71 infection caused pyroptosis formation in SH-SY5Y cells. The circRNA sequencing analyzed the differentially expressed circRNAs and their possible functions. It was found that the hsa_circ_0045431/hsa_miR_584/NLRP3 regulatory axis might be involved in pyroptosis formation during EV-A71 infection. Then, hsa_circ_0045431 sponged hsa_miR_584 and hsa_miR_584 directly targeted NLRP3 were validated by IF, dual-luciferase, qRT-PCR and WB assays. Functional experiments were performed to further uncover that the up-regulation of hsa_circ_0045431 and NLRP3 promoted the inflammatory pyroptosis and viral replication, while the up-regulation of hsa_miR_584 suppressed the inflammatory pyroptosis and viral replication, and vice versa. Collectively, our study demystified that EV-A71 infection induced pyroptosis formation by activating hsa_circ_0045431/hsa_miR_584/NLRP3 regulatory axis, which could further effect viral replication. These findings provided novel insights into the pathogenesis of EV-A71 infection, and meanwhile revealed that the hsa_circ_0045431/ hsa_miR_584/NLRP3 regulatory axis can serve as a potential biological therapeutic target for EV-A71 infection

    Comparison of storage and lignin accumulation characteristics between two types of snow pea.

    No full text
    Snow pea is a very important vegetable, and its postharvest storage characteristics vary with species. Few studies on the differences in its storage characteristics are available. In this study, postharvest changes in metabolic rate (respiration rate and water loss rate), membrane permeability (relative conductivity), nutrient contents (total sugar, amino acids, starch), lignin, cellulose, β-Glucosidase (β-GC) enzyme activity, texture properties, PG enzyme activity and their relationship were analyzed in large sweet broad peas and small snow peas. On the 8th day of storage, we found that the respiration rate and water loss rate were increased, total sugars and total amino acids were decreased significantly in these two legume vegetables, and that metabolic rate was slower with less nutrients consumed in large sweet broad peas than in small snow peas. Throughout the 8-day whole storage, the lignin and cellulose contents were always lower in large sweet broad peas than in small snow peas. With the increasing storage time, small snow peas were more susceptible to lignification and fibrosis, which was observed in their texture properties. The enzyme activities related to cellulose and pectin degradation (β-GC, PG) also showed the same trend during the storage. At the late stage of storage, the taste of large sweet broad peas was better than that of small snow peas. In conclusion, the storage period of large sweet broad peas was longer than that of the small snow peas, and its lignification degree was lower than that of the small snow peas. Meanwhile, senescence and lignin accumulation led to hardening of snow pea during postharvest storage. Our findings provide a theoretical reference for improving the postharvest storage quality of snow pea and extending the shelf life
    corecore