33 research outputs found
Implementation and performances of the IPbus protocol for the JUNO Large-PMT readout electronics
The Jiangmen Underground Neutrino Observatory (JUNO) is a large neutrino
detector currently under construction in China. Thanks to the tight
requirements on its optical and radio-purity properties, it will be able to
perform leading measurements detecting terrestrial and astrophysical neutrinos
in a wide energy range from tens of keV to hundreds of MeV. A key requirement
for the success of the experiment is an unprecedented 3% energy resolution,
guaranteed by its large active mass (20 kton) and the use of more than 20,000
20-inch photo-multiplier tubes (PMTs) acquired by high-speed, high-resolution
sampling electronics located very close to the PMTs. As the Front-End and
Read-Out electronics is expected to continuously run underwater for 30 years, a
reliable readout acquisition system capable of handling the timestamped data
stream coming from the Large-PMTs and permitting to simultaneously monitor and
operate remotely the inaccessible electronics had to be developed. In this
contribution, the firmware and hardware implementation of the IPbus based
readout protocol will be presented, together with the performances measured on
final modules during the mass production of the electronics
Mass testing of the JUNO experiment 20-inch PMTs readout electronics
The Jiangmen Underground Neutrino Observatory (JUNO) is a multi-purpose,
large size, liquid scintillator experiment under construction in China. JUNO
will perform leading measurements detecting neutrinos from different sources
(reactor, terrestrial and astrophysical neutrinos) covering a wide energy range
(from 200 keV to several GeV). This paper focuses on the design and development
of a test protocol for the 20-inch PMT underwater readout electronics,
performed in parallel to the mass production line. In a time period of about
ten months, a total number of 6950 electronic boards were tested with an
acceptance yield of 99.1%
Validation and integration tests of the JUNO 20-inch PMTs readout electronics
The Jiangmen Underground Neutrino Observatory (JUNO) is a large neutrino
detector currently under construction in China. JUNO will be able to study the
neutrino mass ordering and to perform leading measurements detecting
terrestrial and astrophysical neutrinos in a wide energy range, spanning from
200 keV to several GeV. Given the ambitious physics goals of JUNO, the
electronic system has to meet specific tight requirements, and a thorough
characterization is required. The present paper describes the tests performed
on the readout modules to measure their performances.Comment: 20 pages, 13 figure
Inspection and Reconstruction of Metal-Roof Deformation under Wind Pressure Based on Bend Sensors
Metal roof sheathings are widely employed in large-span buildings because of their light weight, high strength and corrosion resistance. However, their severe working environment may lead to deformation, leakage and wind-lift, etc. Thus, predicting these damages in advance and taking maintenance measures accordingly has become important to avoid economic losses and personal injuries. Conventionally, the health monitoring of metal roofs mainly relies on manual inspection, which unavoidably compromises the working efficiency and cannot diagnose and predict possible failures in time. Thus, we proposed a novel damage monitoring scheme implemented by laying bend sensors on vital points of metal roofs to precisely monitor the deformation in real time. A fast reconstruction model based on improved Levy-type solution is established to estimate the overall deflection distribution from the measured data. A standing seam metal roof under wind pressure is modeled as an elastic thin plate with a uniform load and symmetrical boundaries. The superposition method and Levy solution are adopted to obtain the analytical model that can converge quickly through simplifying an infinite series. The truncation error of this model is further analyzed. Simulation and experiments are carried out. They show that the proposed model is in reasonable agreement with the experimental results
Identification of Genes and Pathways Associated with Kidney Ischemia-Reperfusion Injury by Bioinformatics Analyses
Background/Aims: Ischemia-reperfusion (IR) injury in the kidney is a major cause of acute kidney injury in humans. However, the molecular mechanisms responsible for the progression of kidney IR injury still need to be explored. In this study, we aimed to explore the underlying genes and pathways associated with kidney IR injury. Methods: Gene microarray of GSE27274 was downloaded from the Gene Expression Omnibus database. The differentially expressed genes (DEGs) between kidney IR injury and kidney IR rat samples were analyzed. Gene Ontology biological process (BP) and pathway enrichment analyses of DEGs were performed, followed by protein-protein interaction (PPI) network construction. Results: A total of 88 up-regulated and 102 down-regulated DEGs were identified. The up-regulated DEGs including FK506 binding protein 1A (Fkb1a) were mainly enriched in biological processes (BPs) related to protein ubiquitination. The down-regulated DEGs including complement component 5 (C5) were enriched in complement and coagulation cascades pathway. Choline phosphotransferase 1 (Chpt1) was enriched in glycerophospholipid metabolism pathway. In the PPI network, heme oxygenase (decycling) 1 (Hmox1) was as a hub gene that interacted with the maximum nodes. Conclusions: DEGs of Fkb1a, C5, Chpt1, and Hmox1, as well as complement and coagulation cascades pathway, glycerophospholipid metabolism pathway, and BP terms related to protein ubiquitinatione may be the potential targets for diagnosis and treatment of kidney IR injury
A Blockchain Based Privacy-Preserving Cloud Service Level Agreement Auditing Scheme
Cloud computing can provide on-demand resource services for customers, but also faces server downtime and security issues. The cloud Service Level Agreement (SLA), as a compensation agreement between customers and service providers, has some problems such as non active execution, disputes and infringement. Existing SLA monitoring solutions either lack multi-party trust, have weak audit ability, or have privacy issue. To address the above problems, a blockchain-based cloud SLA violation monitoring and auditing model is proposed. This model provides multi-party trust through blockchain, ensures data authenticity by a dual monitoring method and keeps monitoring result securely stored on the blockchain by appling trapdoor order revealing encryption algorithm (TORE). Besides, a smart contract is designed to automatically perform auditing tasks to ensure credible violation judgment and privacy preserving. At last, some punishment strategies for violations are introduced, which can distribute compensation or change user’s reputation with smart contracts. With experiments, we exam the cost of the blockchain-based system and demonstrate the feasibility of our proposed model
Recommended from our members
Electrolytes in Organic Batteries
Organic batteries using redox-active polymers and small organic compounds have become promising candidates for next-generation energy storage devices due to the abundance, environmental benignity, and diverse nature of organic resources. To date, tremendous research efforts have been devoted to developing advanced organic electrode materials and understanding the material structure-performance correlation in organic batteries. In contrast, less attention was paid to the correlation between electrolyte structure and battery performance, despite the critical roles of electrolytes for the dissolution of organic electrode materials, the formation of the electrode-electrolyte interphase, and the solvation/desolvation of charge carriers. In this review, we discuss the prospects and challenges of organic batteries with an emphasis on electrolytes. The differences between organic and inorganic batteries in terms of electrolyte property requirements and charge storage mechanisms are elucidated. To provide a comprehensive and thorough overview of the electrolyte development in organic batteries, the electrolytes are divided into four categories including organic liquid electrolytes, aqueous electrolytes, inorganic solid electrolytes, and polymer-based electrolytes, to introduce different components, concentrations, additives, and applications in various organic batteries with different charge carriers, interphases, and separators. The perspectives and outlook for the future development of advanced electrolytes are also discussed to provide a guidance for the electrolyte design and optimization in organic batteries. We believe that this review will stimulate an in-depth study of electrolytes and accelerate the commercialization of organic batteries