11 research outputs found
Discovery of the progenitor of the type Ia supernova 2007on
Type Ia supernovae are exploding stars that are used to measure the
accelerated expansion of the Universe and are responsible for most of the iron
ever produced. Although there is general agreement that the exploding star is a
white dwarf in a binary system, the exact configuration and trigger of the
explosion is unclear, which could hamper their use for precision cosmology. Two
families of progenitor models have been proposed. In the first, a white dwarf
accretes material from a companion until it exceeds the Chandrasekhar mass,
collapses and explodes. Alternatively, two white dwarfs merge, again causing
catastrophic collapse and an explosion. It has hitherto been impossible to
determine if either model is correct. Here we report the discovery of an object
in pre-supernova archival X-ray images at the position of the recent type Ia
supernova (2007on) in the elliptical galaxy NGC 1404. Deep optical images (also
archival) show no sign of this object. From this we conclude that the X-ray
source is the progenitor of the supernova, which favours the accretion model
for this supernova, although the host galaxy is older (6-9 Gyr) than the age at
which the explosions are predicted in the accreting models.Comment: Published in Nature See also the two follow-up papers: Roelofs,
Bassa, Voss, Nelemans Nelemans, Voss, Roelofs, Bassa both on astro-ph
02/15/0
Planets and Axisymmetric Mass Loss
Bipolar planetary nebulae (PNe), as well as extreme elliptical PNe are formed
through the influence of a stellar companion. But half of all PN progenitors
are not influenced by any stellar companion, and, as I show here, are expected
to rotate very slowly on reaching the upper asymptotic giant branch; hence they
expect to form spherical PNe, unless they are spun-up. But since most PNe are
not spherical, I argue that about 50 percents of AGB stars are spun-up by
planets, even planets having a mass as low as 0.01 times the mass of Jupiter,
so they form elliptical PNe. The rotation by itself will not deform the AGB
wind, but may trigger another process that will lead to axisymmetric mass loss,
e.g., weak magnetic activity, as in the cool magnetic spots model. This model
also explains the transition from spherical to axisymmetric mass loss on the
upper AGB. For such low mass planets to substantially spin-up the stellar
envelope, they should enter the envelope when the star reaches the upper AGB.
This "fine-tuning" can be avoided if there are several planets on average
around each star, as is the case in the solar system, so that one of them is
engulfed when the star reaches the upper AGB.Comment: 8 pages, 1 figure. To appear in the proceedings of the conference,
"Post-AGB Objects (proto-planetary nebulae) as a Phase of Stellar Evolution",
Torun, Poland, July 5-7, 2000, eds. R. Szczerba, R. Tylenda, and S.K. Gorn
The Evolution of Compact Binary Star Systems
We review the formation and evolution of compact binary stars consisting of
white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and
BHs are thought to be the primary astrophysical sources of gravitational waves
(GWs) within the frequency band of ground-based detectors, while compact
binaries of WDs are important sources of GWs at lower frequencies to be covered
by space interferometers (LISA). Major uncertainties in the current
understanding of properties of NSs and BHs most relevant to the GW studies are
discussed, including the treatment of the natal kicks which compact stellar
remnants acquire during the core collapse of massive stars and the common
envelope phase of binary evolution. We discuss the coalescence rates of binary
NSs and BHs and prospects for their detections, the formation and evolution of
binary WDs and their observational manifestations. Special attention is given
to AM CVn-stars -- compact binaries in which the Roche lobe is filled by
another WD or a low-mass partially degenerate helium-star, as these stars are
thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure
Type Ia Supernovae and the Hubble Constant
The focus of this review is the work that has been done during the 1990s on
using Type Ia supernovae (SNe Ia) to measure the Hubble constant (). SNe
Ia are well suited for measuring . A straightforward maximum-light color
criterion can weed out the minority of observed events that are either
intrinsically subluminous or substantially extinguished by dust, leaving a
majority subsample that has observational absolute-magnitude dispersions of
less than mag.
Correlations between absolute magnitude and one or more distance-independent SN
Ia or parent-galaxy observables can be used to further standardize the absolute
magnitudes to better than 0.2 mag. The absolute magnitudes can be calibrated in
two independent ways --- empirically, using Cepheid-based distances to parent
galaxies of SNe Ia, and physically, by light curve and spectrum fitting. At
present the empirical and physical calibrations are in agreement at or -19.5. Various ways that have been used to match
Cepheid-calibrated SNe Ia or physical models to SNe Ia that have been observed
out in the Hubble flow have given values of distributed throughout the
range 54 to 67 km/s Mpc. Astronomers who want a consensus value of
from SNe Ia with conservative errors could, for now, use km/s
Mpc^{-1}$.Comment: 46 pages. Hard copies of figures, all from the published literature,
can be obtained from the author. With permission, from the Annual Review of
Astronomy and Astrophysics, Volume 36, copyright 1998, by Annual Review
Eta Carinae and the Luminous Blue Variables
We evaluate the place of Eta Carinae amongst the class of luminous blue
variables (LBVs) and show that the LBV phenomenon is not restricted to
extremely luminous objects like Eta Car, but extends luminosities as low as
log(L/Lsun) = 5.4 - corresponding to initial masses ~25 Msun, and final masses
as low as ~10-15 Msun. We present a census of S Doradus variability, and
discuss basic LBV properties, their mass-loss behaviour, and whether at maximum
light they form pseudo-photospheres. We argue that those objects that exhibit
giant Eta Car-type eruptions are most likely related to the more common type of
S Doradus variability. Alternative atmospheric models as well as
sub-photospheric models for the instability are presented, but the true nature
of the LBV phenomenon remains as yet elusive. We end with a discussion on the
evolutionary status of LBVs - highlighting recent indications that some LBVs
may be in a direct pre-supernova state, in contradiction to the standard
paradigm for massive star evolution.Comment: 27 pages, 6 figures, Review Chapter in "Eta Carinae and the supernova
imposters" (eds R. Humphreys and K. Davidson) new version submitted to
Springe
Gravitational Waves from Gravitational Collapse
Gravitational wave emission from the gravitational collapse of massive stars
has been studied for more than three decades. Current state of the art
numerical investigations of collapse include those that use progenitors with
realistic angular momentum profiles, properly treat microphysics issues,
account for general relativity, and examine non--axisymmetric effects in three
dimensions. Such simulations predict that gravitational waves from various
phenomena associated with gravitational collapse could be detectable with
advanced ground--based and future space--based interferometric observatories.Comment: 68 pages including 13 figures; revised version accepted for
publication in Living Reviews in Relativity (http://www.livingreviews.org
Observational Constraints on the Common Envelope Phase
The common envelope phase was first proposed more than forty years ago to
explain the origins of evolved, close binaries like cataclysmic variables. It
is now believed that the phase plays a critical role in the formation of a wide
variety of other phenomena ranging from type Ia supernovae through to binary
black holes, while common envelope mergers are likely responsible for a range
of enigmatic transients and supernova imposters. Yet, despite its clear
importance, the common envelope phase is still rather poorly understood. Here,
we outline some of the basic principles involved, the remaining questions as
well as some of the recent observational hints from common envelope phenomena -
namely planetary nebulae and luminous red novae - which may lead to answering
these open questions.Comment: 29 pages, 8 figures. To appear in the book "Reviews in Frontiers of
Modern Astrophysics: From Space Debris to Cosmology" (eds. Kabath, Jones and
Skarka; publisher Springer Nature) funded by the European Union Erasmus+
Strategic Partnership grant "Per Aspera Ad Astra Simul"
2017-1-CZ01-KA203-03556
A story of singular degeneracy
Astronomers have a choice of two models of how type Ia supernovae arise. The progenitor for one of these huge stellar explosions has now been discovered, bringing a definitive judgement a little closer