266 research outputs found

    SENTIMENT ANALYSIS OF CHINESE MICROBLOG MESSAGE USING NEURAL NETWORK-BASED VECTOR REPRESENTATION FOR MEASURING REGIONAL PREJUDICE

    Get PDF
    Regional prejudice is prevalent in Chinese cities in which native residents and migrants lack a basic level of trust in the other group. Like Twitter, Sina Weibo is a social media platform where people actively engage in discussions on various social issues. Thus, it provides a good data source for measuring individuals’ regional prejudice on a large scale. We find that a resentful tone dominates in Weibo messages related to migrants. In this paper, we propose a novel approach, named DKV, for recognizing polarity and direction of sentiment for Weibo messages using distributed real-valued vector representation of keywords learned from neural networks. Such a representation can project rich context information (or embedding) into the vector space, and subsequently be used to infer similarity measures among words, sentences, and even documents. We provide a comprehensive performance evaluation to demonstrate that by exploiting the keyword embeddings, DKV paired with support vector machines can effectively recognize a Weibo message into the predefined sentiment and its direction. Results demonstrate that our method can achieve the best performances compared to other approaches

    Atomically-thin metallic Si and Ge allotropes with high Fermi velocities

    Full text link
    Silicon and germanium are the well-known materials used to manufacture electronic devices for the integrated circuits but they themselves are not considered as promising options for interconnecting the devices due to their semiconducting nature. We have discovered that both Si and Ge atoms can form unexpected metallic monolayer structures which are more stable than the extensively studied semimetallic silicene and germanene, respectively. More importantly, the newly discovered two-dimensional allotropes of Si and Ge have Fermi velocities superior to the Dirac fermions in graphene, indicating that the metal wires needed in the silicon-based integrated circuits can be made of Si atom itself without incompatibility, allowing for all-silicon-based integrated circuits.Comment: 10 pages, 3 figures, 1 tabl

    Microstructural differences in white matter tracts across middle to late adulthood : a diffusion MRI study on 7167 UK Biobank participants

    Get PDF
    Acknowledgements This research was approved by the UK Biobank (application number: 24089) and was supported by the Roland Sutton Academic Trust (grant number: 0039/R/16) and Taiwan National Health Research Institute (NHRI-EX109-10928NI). We acknowledge the valuable contributions of members of the UK Biobank Imaging Working Group and the UK Biobank coordinating center. The UK Biobank (including the imaging enhancement) was supported by the UK Medical Research Council and the Wellcome Trust. The authors are grateful for the provision of simultaneous multislice (multiband) pulse sequence and reconstruction algorithms by the Center for Magnetic Resonance Research, University of Minnesota. Finally, the authors are extremely grateful to all UK Biobank study participants, who have generously donated their time to make this resource possible. This article was edited by Wallace Academic Editing.Peer reviewedPostprin

    The Relationship between Brown Adipose Tissue Activity and Neoplastic Status: an 18F-FDG PET/CT Study in the Tropics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Brown adipose tissue (BAT) has thermogenic potential. For its activation, cold exposure is considered a critical factor though other determinants have also been reported. The purpose of this study was to assess the relationship between neoplastic status and BAT activity by 2-deoxy-2-[18F]fluoro-D-glucose (<sup>18</sup>F-FDG) positron emission tomography/computed tomography (PET/CT) in people living in the tropics, where the influence of outdoor temperature was low.</p> <p>Methods</p> <p><sup>18</sup>F-FDG PET/CT scans were reviewed and the total metabolic activity (TMA) of identified activated BAT quantified. The distribution and TMA of activated BAT were compared between patients with and without a cancer history. The neoplastic status of patients was scored according to their cancer history and <sup>18</sup>F-FDG PET/CT findings. We evaluated the relationships between the TMA of BAT and neoplastic status along with other factors: age, body mass index, fasting blood sugar, gender, and outdoor temperature.</p> <p>Results</p> <p>Thirty of 1740 patients had activated BAT. Those with a cancer history had wider BAT distribution (<it>p </it>= 0.043) and a higher TMA (<it>p </it>= 0.028) than those without. A higher neoplastic status score was associated with a higher average TMA. Multivariate analyses showed that neoplastic status was the only factor significantly associated with the TMA of activated BAT (<it>p </it>= 0.016).</p> <p>Conclusions</p> <p>Neoplastic status is a critical determinant of BAT activity in patients living in the tropics. More active neoplastic status was associated with more vigorous TMA of BAT.</p

    Optimizing Human Synovial Fluid Preparation for Two-Dimensional Gel Electrophoresis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Proteome analysis is frequently applied in identifying the proteins or biomarkers in knee synovial fluids (SF) that are associated with osteoarthritis and other arthritic disorders. The 2-dimensional gel electrophoresis (2-DE) is the technique of choice in these studies. Disease biomarkers usually appear in low concentrations and may be masked by high abundant proteins. Therefore, the main aim of this study was to find the most suitable sample preparation method that can optimize the expression of proteins on 2-DE gels that can be used to develop a reference proteome picture for non-osteoarthritic knee synovial fluid samples. Proteome pictures obtained from osteoarthritic knee synovial fluids can then be compared with the reference proteome pictures obtained in this study to assist us in identifying the disease biomarkers more correctly.</p> <p>Results</p> <p>The proteomic tool of 2-DE with immobilized pH gradients was applied in this study. A total of 12 2-DE gel images were constructed from SF samples that were free of osteoarthritis. In these samples, 3 were not treated with any sample preparation methods, 3 were treated with acetone, 3 were treated with 2-DE Clean-Up Kit, and 3 were treated with the combination of acetone and 2-D Clean-Up Kit prior to 2-DE analysis. Gel images were analyzed using the PDQuest Basic 8.0.1 Analytical software. Protein spots that were of interest were excised from the gels and sent for identification by mass spectrometry. Total SF total protein concentration was calculated to be 21.98 ± 0.86 mg/mL. The untreated SF samples were detected to have 456 ± 33 protein spots on 2-DE gel images. Acetone treated SF samples were detected to have 320 ± 28 protein spots, 2-D Clean-Up Kit treated SF samples were detected to have 413 ± 31 protein spots, and the combined treatment method of acetone and 2-D Clean-Up Kit was detected to have 278 ± 26 protein spots 2-DE gel images. SF samples treated with 2-D Clean-Up Kit revealed clearer presentation of the isoforms and increased intensities of the less abundant proteins of haptoglobin, apolipoprotein A-IV, prostaglandin-D synthase, alpha-1B-glycoprotein, and alpha-2-HS-glycoprotein on 2-DE gel images as compared with untreated SF samples and SF samples treated with acetone.</p> <p>Conclusions</p> <p>The acetone precipitation method and the combined treatment effect of acetone and 2-DE Clean-Up Kit are not preferred in preparing SF samples for 2-DE analysis as both protein intensities and numbers decrease significantly. On the other hand, 2-D Clean-Up Kit treated SF samples revealed clearer isoforms and higher intensities for the less abundant proteins of haptoglobin, apolipoprotein A-IV, prostaglandin-D synthase, alpha-1B-glycoprotein, and alpha-2-HS-glycoprotein on 2-DE gels. As a result, it is recommended that SF samples should be treated with protein clean up products such as 2-D Clean-Up Kit first before conducting proteomic research in searching for the relevant biomarkers associated with knee osteoarthritis.</p

    Effects of Metformin on the Cerebral Metabolic Changes in Type 2 Diabetic Patients

    Get PDF
    Metformin, a widely used antidiabetic drug, has numerous effects on human metabolism. Based on emerging cellular, animal, and epidemiological studies, we hypothesized that metformin leads to cerebral metabolic changes in diabetic patients. To explore metabolism-influenced foci of brain, we used 2-deoxy-2-[18F]fluoro-D-glucose (FDG) positron emission tomography for type 2 diabetic patients taking metformin (MET, n=18), withdrawing from metformin (wdMET, n=13), and not taking metformin (noMET, n=9). Compared with the noMET group, statistical parametric mapping showed that the MET group had clusters with significantly higher metabolism in right temporal, right frontal, and left occipital lobe white matter and lower metabolism in the left parahippocampal gyrus, left fusiform gyrus, and ventromedial prefrontal cortex. In volume of interest (VOI-) based group comparisons, the normalized FDG uptake values of both hypermetabolic and hypometabolic clusters were significantly different between groups. The VOI-based correlation analysis across the MET and wdMET groups showed a significant negative correlation between normalized FDG uptake values of hypermetabolic clusters and metformin withdrawal durations and a positive but nonsignificant correlation in the turn of hypometabolic clusters. Conclusively, metformin affects cerebral metabolism in some white matter and semantic memory related sites in patients with type 2 diabetes

    Enhanced Differentiation of Three-Gene-Reprogrammed Induced Pluripotent Stem Cells into Adipocytes via Adenoviral-Mediated PGC-1α Overexpression

    Get PDF
    Induced pluripotent stem cells formed by the introduction of only three factors, Oct4/Sox2/Klf4 (3-gene iPSCs), may provide a safer option for stem cell-based therapy than iPSCs conventionally introduced with four-gene iPSCs. Peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) plays an important role during brown fat development. However, the potential roles of PGC-1α in regulating mitochondrial biogenesis and the differentiation of iPSCs are still unclear. Here, we investigated the effects of adenovirus-mediated PGC-1α overexpression in 3-gene iPSCs. PGC-1α overexpression resulted in increased mitochondrial mass, reactive oxygen species production, and oxygen consumption. Microarray-based bioinformatics showed that the gene expression pattern of PGC-1α-overexpressing 3-gene iPSCs resembled the expression pattern observed in adipocytes. Furthermore, PGC-1α overexpression enhanced adipogenic differentiation and the expression of several brown fat markers, including uncoupling protein-1, cytochrome C, and nuclear respiratory factor-1, whereas it inhibited the expression of the white fat marker uncoupling protein-2. Furthermore, PGC-1α overexpression significantly suppressed osteogenic differentiation. These data demonstrate that PGC-1α directs the differentiation of 3-gene iPSCs into adipocyte-like cells with features of brown fat cells. This may provide a therapeutic strategy for the treatment of mitochondrial disorders and obesity
    corecore