6 research outputs found

    Extremely Red Galaxies at z = 5-9 with MIRI and NIRSpec:Dusty Galaxies or Obscured Active Galactic Nuclei?

    Get PDF
    We study a new population of extremely red objects (EROs) recently discovered by the James Webb Space Telescope (JWST) based on their NIRCam colors F277W − F444W &gt; 1.5 mag. We find 37 EROs in the Cosmic Evolution Early Release Science Survey (CEERS) field with F444W &lt; 28 mag and photometric redshifts between 5 &lt; z &lt; 7, with median z = 6.9 − 1.6 + 1.0 . Surprisingly, despite their red long-wavelength colors, these EROs have blue short-wavelength colors (F150W − F200W ∼ 0 mag) indicative of bimodal spectral energy distributions (SEDs) with a red, steep slope in the rest-frame optical, and a blue, flat slope in the rest-frame UV. Moreover, all these EROs are unresolved, point-like sources in all NIRCam bands. We analyze the SEDs of eight of them with MIRI and NIRSpec observations using stellar population models and active galactic nucleus (AGN) templates. We find that dusty galaxies or obscured AGNs provide similarly good SED fits but different stellar properties: massive and dusty, log M ⋆ / M ⊙ ∼ 10 and A V ≳ 3 mag, or low mass and obscured, log M ⋆ / M ⊙ ∼ 7.5 and A V ∼ 0 mag, hosting an obscured quasi-stellar object (QSO). SED modeling does not favor either scenario, but their unresolved sizes are more suggestive of AGNs. If any EROs are confirmed to have log M ⋆ / M ⊙ ≳ 10.5, it would increase the pre-JWST number density at z &gt; 7 by up to a factor ∼60. Similarly, if they are QSOs with luminosities in the L bol &gt; 1045-46 erg s−1 range, their number would exceed that of bright blue QSOs by more than three orders of magnitude. Additional photometry at mid-infrared wavelengths will reveal the true nature of the red continuum emission in these EROs and will place this puzzling population in the right context of galaxy evolution.</p

    CEERS Key Paper. VII. JWST/MIRI Reveals a Faint Population of Galaxies at Cosmic Noon Unseen by Spitzer

    Get PDF
    The Cosmic Evolution Early Release Science program observed the Extended Groth Strip (EGS) with the Mid-Infrared Instrument (MIRI) on the James Webb Space Telescope (JWST) in 2022. In this paper, we discuss the four MIRI pointings that observed with longer-wavelength filters, including F770W, F1000W, F1280W, F1500W, F1800W, and F2100W. We compare the MIRI galaxies with the Spitzer/MIPS 24 μm population in the EGS field. We find that MIRI can observe an order of magnitude deeper than MIPS in significantly shorter integration times, attributable to JWST's much larger aperture and MIRI’s improved sensitivity. MIRI is exceptionally good at finding faint (L IR &lt; 1010 L ⊙) galaxies at z ∼ 1-2. We find that a significant portion of MIRI galaxies are “mid-IR weak”—they have strong near-IR emission and relatively weaker mid-IR emission, and most of the star formation is unobscured. We present new IR templates that capture how the mid-to-near-IR emission changes with increasing infrared luminosity. We present two color-color diagrams to separate mid-IR weak galaxies and active galactic nuclei (AGN) from dusty star-forming galaxies and find that these color diagrams are most effective when used in conjunction with each other. We present the first number counts of 10 μm sources and find that there are ≲10 IR AGN per MIRI pointing, possibly due to the difficulty of distinguishing AGN from intrinsically mid-IR weak galaxies (due to low metallicities or dust content). We conclude that MIRI is most effective at observing moderate-luminosity (L IR = 109-1010 L ⊙) galaxies at z = 1-2, and that photometry alone is not effective at identifying AGN within this faint population.</p

    Extremely Red Galaxies at z = 5-9 with MIRI and NIRSpec:Dusty Galaxies or Obscured Active Galactic Nuclei?

    Get PDF
    We study a new population of extremely red objects (EROs) recently discovered by the James Webb Space Telescope (JWST) based on their NIRCam colors F277W − F444W &gt; 1.5 mag. We find 37 EROs in the Cosmic Evolution Early Release Science Survey (CEERS) field with F444W &lt; 28 mag and photometric redshifts between 5 &lt; z &lt; 7, with median z = 6.9 − 1.6 + 1.0 . Surprisingly, despite their red long-wavelength colors, these EROs have blue short-wavelength colors (F150W − F200W ∼ 0 mag) indicative of bimodal spectral energy distributions (SEDs) with a red, steep slope in the rest-frame optical, and a blue, flat slope in the rest-frame UV. Moreover, all these EROs are unresolved, point-like sources in all NIRCam bands. We analyze the SEDs of eight of them with MIRI and NIRSpec observations using stellar population models and active galactic nucleus (AGN) templates. We find that dusty galaxies or obscured AGNs provide similarly good SED fits but different stellar properties: massive and dusty, log M ⋆ / M ⊙ ∼ 10 and A V ≳ 3 mag, or low mass and obscured, log M ⋆ / M ⊙ ∼ 7.5 and A V ∼ 0 mag, hosting an obscured quasi-stellar object (QSO). SED modeling does not favor either scenario, but their unresolved sizes are more suggestive of AGNs. If any EROs are confirmed to have log M ⋆ / M ⊙ ≳ 10.5, it would increase the pre-JWST number density at z &gt; 7 by up to a factor ∼60. Similarly, if they are QSOs with luminosities in the L bol &gt; 1045-46 erg s−1 range, their number would exceed that of bright blue QSOs by more than three orders of magnitude. Additional photometry at mid-infrared wavelengths will reveal the true nature of the red continuum emission in these EROs and will place this puzzling population in the right context of galaxy evolution.</p

    JWST CEERS probes the role of stellar mass and morphology in obscuring galaxies

    Get PDF
    In recent years, observations have uncovered a population of massive galaxies that are invisible or very faint in deep optical/near-infrared (near-IR) surveys but brighter at longer wavelengths. However, the nature of these optically dark or faint galaxies (OFGs; one of several names given to these objects) is highly uncertain. In this work, we investigate the drivers of dust attenuation in the JWST era. In particular, we study the role of stellar mass, size, and orientation in obscuring star-forming galaxies (SFGs) at 3'., &lt;'., z'., &lt;'., 7.5, focusing on the question of why OFGs and similar galaxies are so faint at optical/near-IR wavelengths. We find that stellar mass is the primary proxy for dust attenuation, among the properties studied. Effective radius and axis ratio do not show a clear link with dust attenuation, with the effect of orientation being close to random. However, there is a subset of highly dust attenuated (AV'., &gt;'., 1, typically) SFGs, of which OFGs are a specific case. For this subset, we find that the key distinctive feature is their compact size (for massive systems with log(M∗/M™ ) &gt; 10); OFGs exhibit a 30% smaller effective radius than the average SFG at the same stellar mass and redshift. On the contrary, OFGs do not exhibit a preference for low axis ratios (i.e., edge-on disks). The results in this work show that stellar mass is the primary proxy for dust attenuation and compact stellar light profiles behind the thick dust columns obscuring typical massive SFGs.</p

    CEERS Key Paper. VIII. Emission-line Ratios from NIRSpec and NIRCam Wide-Field Slitless Spectroscopy at z &gt; 2

    Get PDF
    We use James Webb Space Telescope Near-Infrared Camera Wide Field Slitless Spectroscopy (NIRCam WFSS) and the Near-Infrared spectrograph (NIRSpec) in the Cosmic Evolution Early Release survey to measure rest-frame optical emission-line ratios of 155 galaxies at z &lt; 2. The blind NIRCam grism observations include a sample of galaxies with bright emission lines that were not observed on the NIRSpec masks. We study the changes of the Hα, [O III]/Hβ, and [Ne III]/[O II] emission lines in terms of redshift by comparing to lower-redshift SDSS, CLEAR, and MOSDEF samples. We find a significant (&gt;3σ) correlation between [O III]/Hβ with redshift, while [Ne III]/[O II] has a marginal (2σ) correlation with redshift. We compare [O III]/Hβ and [Ne III]/[O II] to stellar mass and Hβ SFR. We find that both emission-line ratios have a correlation with Hβ SFR and an anticorrelation with stellar mass across the redshifts 0 &gt; z &gt; 9. Comparison with MAPPINGS V models indicates that these trends are consistent with lower metallicity and higher ionization in low-mass and high-SFR galaxies. We additionally compare to IllustrisTNG predictions and find that they effectively describe the highest [O III]/Hβ ratios observed in our sample, without the need to invoke MAPPINGS models with significant shock ionization components.</p

    CEERS Key Paper. VIII. Emission-line Ratios from NIRSpec and NIRCam Wide-Field Slitless Spectroscopy at z &gt; 2

    Get PDF
    We use James Webb Space Telescope Near-Infrared Camera Wide Field Slitless Spectroscopy (NIRCam WFSS) and the Near-Infrared spectrograph (NIRSpec) in the Cosmic Evolution Early Release survey to measure rest-frame optical emission-line ratios of 155 galaxies at z &lt; 2. The blind NIRCam grism observations include a sample of galaxies with bright emission lines that were not observed on the NIRSpec masks. We study the changes of the Hα, [O III]/Hβ, and [Ne III]/[O II] emission lines in terms of redshift by comparing to lower-redshift SDSS, CLEAR, and MOSDEF samples. We find a significant (&gt;3σ) correlation between [O III]/Hβ with redshift, while [Ne III]/[O II] has a marginal (2σ) correlation with redshift. We compare [O III]/Hβ and [Ne III]/[O II] to stellar mass and Hβ SFR. We find that both emission-line ratios have a correlation with Hβ SFR and an anticorrelation with stellar mass across the redshifts 0 &gt; z &gt; 9. Comparison with MAPPINGS V models indicates that these trends are consistent with lower metallicity and higher ionization in low-mass and high-SFR galaxies. We additionally compare to IllustrisTNG predictions and find that they effectively describe the highest [O III]/Hβ ratios observed in our sample, without the need to invoke MAPPINGS models with significant shock ionization components.</p
    corecore