1,444 research outputs found
Accelerating federated learning via momentum gradient descent
Federated learning (FL) provides a communication-efficient approach to solve machine learning problems concerning distributed data, without sending raw data to a central server. However, existing works on FL only utilize first-order gradient descent (GD) and do not consider the preceding iterations to gradient update which can potentially accelerate convergence. In this article, we consider momentum term which relates to the last iteration. The proposed momentum federated learning (MFL) uses momentum gradient descent (MGD) in the local update step of FL system. We establish global convergence properties of MFL and derive an upper bound on MFL convergence rate. Comparing the upper bounds on MFL and FL convergence rates, we provide conditions in which MFL accelerates the convergence. For different machine learning models, the convergence performance of MFL is evaluated based on experiments with MNIST and CIFAR-10 datasets. Simulation results confirm that MFL is globally convergent and further reveal significant convergence improvement over FL
A Comparative Study on the Consciousness of the Chinese Nation Community of College Students in the New Era of National Traditional Sports
It is the fundamental intention of ethnic work in the new era to forge the consciousness of the Chinese nation community, and it is the main line of work to maintain the unity and stability of the motherland. The national traditional sports are the “living” soul with national cultural characteristics and national historical factors formed by the ancestors of ethnic minorities in the long history. It has a natural advantage for casting the consciousness of the Chinese nation community of college students. In the development and teaching of traditional ethnic sports in colleges and universities, not only can minority college students enhance the historical identity, spiritual identity and cultural identity of the Chinese nation community consciousness, but also non-minority college students can cultivate the Chinese nation community consciousness and consciously practice its purpose and requirements. In the new era, colleges and universities must give full play to the leading role of colleges and universities, the main role of college students and the guarantee role of the state and society through national traditional sports to strengthen the consciousness of the Chinese national community of college students, so as to inject inexhaustible power into the cause of national unity
Optimal Beamforming for Hybrid Satellite Terrestrial Networks with Nonlinear PA and Imperfect CSIT
In hybrid satellite-terrestrial networks (HSTNs), spectrum sharing is crucial
to alleviate the "spectrum scarcity" problem. Therein, the transmit beams
should be carefully designed to mitigate the inter-satellite-terrestrial
interference. Different from previous studies, this work considers the impact
of both nonlinear power amplifier (PA) and large-scale channel state
information at the transmitter (CSIT) on beamforming. These phenomena are
usually inevitable in a practical HSTN. Based on the Saleh model of PA
nonlinearity and the large-scale multi-beam satellite channel parameters, we
formulate a beamforming optimization problem to maximize the achievable rate of
the satellite system while ensuring that the inter-satellite-terrestrial
interference is below a given threshold. The optimal amplitude and phase of
desired beams are derived in a decoupled manner. Simulation results demonstrate
the superiority of the proposed beamforming scheme.Comment: 5 pages, 5 figures, journa
Passive detection of moving aerial target based on multiple collaborative GPS satellites
Passive localization is an important part of intelligent surveillance in security and emergency applications. Nowadays, Global Navigation Satellite Systems (GNSSs) have been widely deployed. As a result, the satellite signal receiver may receive multiple GPS signals simultaneously, incurring echo signal detection failure. Therefore, in this paper, a passive method leveraging signals from multiple GPS satellites is proposed for moving aerial target detection. In passive detection, the first challenge is the interference caused by multiple GPS signals transmitted upon the same spectrum resources. To address this issue, successive interference cancellation (SIC) is utilized to separate and reconstruct multiple GPS signals on the reference channel. Moreover, on the monitoring channel, direct wave and multi-path interference are eliminated by extensive cancellation algorithm (ECA). After interference from multiple GPS signals is suppressed, the cycle cross ambiguity function (CCAF) of the signal on the monitoring channel is calculated and coordinate transformation method is adopted to map multiple groups of different time delay-Doppler spectrum into the distance−velocity spectrum. The detection statistics are calculated by the superposition of multiple groups of distance-velocity spectrum. Finally, the echo signal is detected based on a properly defined adaptive detection threshold. Simulation results demonstrate the effectiveness of our proposed method. They show that the detection probability of our proposed method can reach 99%, when the echo signal signal-to-noise ratio (SNR) is only −64 dB. Moreover, our proposed method can achieve 5 dB improvement over the detection method using a single GPS satellite
Using heterogeneous satellites for passive detection of moving aerial target
Passive detection of a moving aerial target is critical for intelligent surveillance. Its implementation can use signals transmitted from satellites. Nowadays, various types of satellites co-exist which can be used for passive detection. As a result, a satellite signal receiver may receive signals from multiple heterogeneous satellites, causing difficult in echo signal detection. In this paper, a passive moving aerial target detection method leveraging signals from multiple heterogeneous satellites is proposed. In the proposed method, a plurality of direct wave signals is separated in a reference channel first. Then, an adaptive filter with normalized least-mean-square (NLMS) is adopted to suppress direct-path interference (DPI) and multi-path interference (MPI) in a surveillance channel. Next, the maximum values of the cross ambiguity function (CAF) and the fourth order cyclic cumulants cross ambiguity function (FOCCCAF) correspond into each separated direct wave signal and echo signal will be utilized as the detection statistic of each distributed sensor. Finally, final detection probabilities are calculated by decision fusion based on results from distributed sensors. To evaluate the performance of the proposed method, extensive simulation studies are conducted. The corresponding simulation results show that the proposed fusion detection method can significantly improve the reliability of moving aerial target detection using multiple heterogeneous satellites. Moveover, we also show that the proposed detection method is able to significantly improve the detection performance by using multiple collaborative heterogeneous satellites
Signal estimation in cognitive satellite networks for satellite-based industrial internet of things
Satellite industrial Internet of Things (IIoT) plays an important role in industrial manufactures without requiring the support of terrestrial infrastructures. However, due to the scarcity of spectrum resources, existing satellite frequency bands cannot satisfy the demand of IIoT, which have to explore other available spectrum resources. Cognitive satellite networks are promising technologies and have the potential to alleviate the shortage of spectrum resources and enhance spectrum efficiency by sharing both spectral and spatial degrees of freedom. For effective signal estimations, multiple features of wireless signals are needed at receivers, the transmissions of which may cause considerable overhead. To mitigate the overhead, part of parameters, such as modulation order, constellation type, and signal to noise ratio (SNR), could be obtained at receivers through signal estimation rather than transmissions from transmitters to receivers. In this article, a grid method is utilized to process the constellation map to obtain its equivalent probability density function. Then, binary feature matrix of the probability density function is employed to construct a cost function to estimate the modulation order and constellation type for multiple quadrature amplitude modulation (MQAM) signal. Finally, an improved M 2 M ∞ method is adopted to realize the SNR estimation of MQAM. Simulation results show that the proposed method is able to accurately estimate the modulation order, constellation type, and SNR of MQAM signal, and these features are extremely useful in satellite-based IIoT
Modulation parameter estimation of LFM interference for direct sequence spread spectrum communication system in alpha-stable noise
The linear frequency modulation (LFM) interference is one of the typical broadband interferences in direct sequence spread spectrum (DSSS) communication system. In this article, a novel modulation parameter estimation method of LFM interference is proposed for the DSSS communication system in alpha-stable noise. To accurately estimate the modulation parameters, the alpha-stable noise should be eliminated first. Thus, we formulate a new generalized extended linear chirplet transform to suppress the alpha-stable noise, for a robust time-frequency, transformation of LFM interference is realized. Then, using the Radon transform, the maximum value after transformation and the chirp rate according to the angle related to the maximum value are estimated. In addition, a generalized Fourier transform is introduced to estimate the initial frequency of the LFM interference. For the performance analysis, the Cramér-Rao lower bounds of the estimated chirp rate and the initial frequency of the LFM interference in the presence of alpha-stable noise are derived. Moreover, the asymptotic properties of the modulation parameter estimator are analyzed. Simulation results demonstrate that the performance of the proposed parameter estimation method significantly outperforms existing methods, especially in a low SNR regime
- …