40 research outputs found

    Relativistic Dynamics and Extreme Mass Ratio Inspirals

    Full text link
    It is now well-established that a dark, compact object (DCO), very likely a massive black hole (MBH) of around four million solar masses is lurking at the centre of the Milky Way. While a consensus is emerging about the origin and growth of supermassive black holes (with masses larger than a billion solar masses), MBHs with smaller masses, such as the one in our galactic centre, remain understudied and enigmatic. The key to understanding these holes - how some of them grow by orders of magnitude in mass - lies in understanding the dynamics of the stars in the galactic neighbourhood. Stars interact with the central MBH primarily through their gradual inspiral due to the emission of gravitational radiation. Also stars produce gases which will subsequently be accreted by the MBH through collisions and disruptions brought about by the strong central tidal field. Such processes can contribute significantly to the mass of the MBH and progress in understanding them requires theoretical work in preparation for future gravitational radiation millihertz missions and X-ray observatories. In particular, a unique probe of these regions is the gravitational radiation that is emitted by some compact stars very close to the black holes and which could be surveyed by a millihertz gravitational wave interferometer scrutinizing the range of masses fundamental to understanding the origin and growth of supermassive black holes. By extracting the information carried by the gravitational radiation, we can determine the mass and spin of the central MBH with unprecedented precision and we can determine how the holes "eat" stars that happen to be near them.Comment: Update from the first version, 151 pages, accepted for publication @ Living Reviews in Relativit

    Exploring new physics frontiers through numerical relativity

    Get PDF
    The demand to obtain answers to highly complex problems within strong-field gravity has been met with significant progress in the numerical solution of Einstein's equations - along with some spectacular results - in various setups. We review techniques for solving Einstein's equations in generic spacetimes, focusing on fully nonlinear evolutions but also on how to benchmark those results with perturbative approaches. The results address problems in high-energy physics, holography, mathematical physics, fundamental physics, astrophysics and cosmology

    Occurrence of anatoxin-a(s) during a bloom of Anabaena crassa in a water-supply reservoir in southern Brazil

    No full text
    Cyanobacterial blooms and the accompanying production of cyanotoxins are a serious global problem. Toxic blooms of Anabaena species are common in lagoons and reservoirs of southern Brazil. Worldwide, species of the genus Anabaena produce the majority of the known hepatotoxins (microcystins) and neurotoxins [anatoxin-a, anatoxin-a(s), and saxitoxins]. This report links a bloom of Anabaena crassa in the Faxinal Reservoir, the main water supply for the city of Caxias do Sul (400,000 inhabitants) in southern Brazil, to the occurrence of anatoxin-a(s) in the water. During the bloom period, the reservoir was strongly stratified, with higher temperatures and a deep anoxic hypolimnion. Two methods for sample concentration (direct and complete extraction) were tested, and direct extraction of samples proved to be more efficient. Water samples collected during the bloom showed 9% acetylcholinesterase inhibition at 50 mg mL−1, corresponding to 0.61μg of anatoxin-a(s) per gram of lyophilized powder. At these concentrations, symptoms of neurotoxicity and mortality were not observed in tests with Swiss albino mice. Although the concentrations of anatoxin-a(s) in the Faxinal Reservoir were low, these results are important because this is the first record of the toxin for A. crassa. Furthermore, this cyanotoxin is not yet included in Brazilian legislation for drinking-water monitoring, because of the lack of information about toxicity levels and risk calculation for oral doses. The data presented here contribute to the basis for the future inclusion of this toxin in Brazilian legislation for drinking-water quality control, and for the development of analytical methods for this toxin
    corecore