21 research outputs found

    Unifying Token and Span Level Supervisions for Few-Shot Sequence Labeling

    Full text link
    Few-shot sequence labeling aims to identify novel classes based on only a few labeled samples. Existing methods solve the data scarcity problem mainly by designing token-level or span-level labeling models based on metric learning. However, these methods are only trained at a single granularity (i.e., either token level or span level) and have some weaknesses of the corresponding granularity. In this paper, we first unify token and span level supervisions and propose a Consistent Dual Adaptive Prototypical (CDAP) network for few-shot sequence labeling. CDAP contains the token-level and span-level networks, jointly trained at different granularities. To align the outputs of two networks, we further propose a consistent loss to enable them to learn from each other. During the inference phase, we propose a consistent greedy inference algorithm that first adjusts the predicted probability and then greedily selects non-overlapping spans with maximum probability. Extensive experiments show that our model achieves new state-of-the-art results on three benchmark datasets.Comment: Accepted by ACM Transactions on Information System

    Causal effects of potential risk factors on postpartum depression: a Mendelian randomization study

    Get PDF
    BackgroundPostpartum depression (PPD) is a type of depressive episode related to parents after childbirth, which causes a variety of symptoms not only for parents but also affects the development of children. The causal relationship between potential risk factors and PPD remains comprehensively elucidated.MethodsLinkage disequilibrium score regression (LDSC) analysis was conducted to screen the heritability of each instrumental variant (IV) and to calculate the genetic correlations between effective causal factors and PPD. To search for the causal effect of multiple potential risk factors on the incidence of PPD, random effects of the inverse variance weighted (IVW) method were applied. Sensitivity analyses, including weighted median, MR-Egger regression, Cochrane’s Q test, and MR Pleiotropy Residual Sum and Outlier (MR-PRESSO), were performed to detect potential Mendelian randomization (MR) assumption violations. Multivariable MR (MVMR) was conducted to control potential multicollinearity.ResultsA total of 40 potential risk factors were investigated in this study. LDSC regression analysis reported a significant genetic correlation of potential traits with PPD. MR analysis showed that higher body mass index (BMI) (Benjamini and Hochberg (BH) corrected p = 0.05), major depression (MD) (BH corrected p = 5.04E-19), and schizophrenia (SCZ) (BH corrected p = 1.64E-05) were associated with the increased risk of PPD, whereas increased age at first birth (BH corrected p = 2.11E-04), older age at first sexual intercourse (BH corrected p = 3.02E-15), increased average total household income before tax (BH corrected p = 4.57E-02), and increased years of schooling (BH corrected p = 1.47E-11) led to a decreased probability of PPD. MVMR analysis suggested that MD (p = 3.25E-08) and older age at first birth (p = 8.18E-04) were still associated with an increased risk of PPD.ConclusionIn our MR study, we found multiple risk factors, including MD and younger age at first birth, to be deleterious causal risk factors for PPD

    Comparative Analysis of DNA Methylation Reveals Specific Regulations on Ethylene Pathway in Tomato Fruit

    No full text
    DNA methylation is an essential feature of epigenetic regulation and plays a role in various physiological and biochemical processes at CG, CHG, and CHH sites in plants. LeERF1 is an ethylene response factor (ERF) found in tomatoes which plays an important role in ethylene signal transduction. To explore the characteristics of DNA methylation in the ethylene pathway, sense-/antisense-LeERF1 transgenic tomato fruit were chosen for deep sequencing and bioinformatics parsing. The methylation type with the greatest distribution was CG, (71.60–72.80%) and CHH was found least frequently (10.70–12.50%). The level of DNA methylation was different among different tomato genomic regions. The differentially methylated regions (DMRs) and the differentially expressed genes (DEGs) were conjointly analyzed and 3030 different expressed genes were found, of which several are involved in ethylene synthesis and signaling transduction (such as ACS, ACO, MADS-Box, ERFs, and F-box). Furthermore, the relationships between DNA methylation and microRNAs (miRNAs) were also deciphered, providing basic information for the further study of DNA methylation and small RNAs involved in the ethylene pathway

    Analysis of the Coding and Non-Coding RNA Transcriptomes in Response to Bell Pepper Chilling

    No full text
    Increasing evidence suggests that long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and microRNAs (miRNAs) have roles during biotic and abiotic stress, though their exact contributions remain unclear. To explore their biological functions in response to chilling in bell pepper, we examined their accumulation profiles by deep sequencing and identified 380 lncRNAs, 36 circRNAs, 18 miRNAs, and 4128 differentially expressed mRNAs in the chilled versus the non-chilled fruit. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed differentially expressed genes and putative ncRNA targets, including transcription factors of multiple classes, such as myeloblastosis (MYB), basic helix-loop-helix (bHLH), and ethylene response factor (ERF) transcription factors (TFs), enzymes involved in bio-oxidation and oxidative phosphorylation (serine/threonine-protein kinase, polyphenol oxidase, catalase, peroxidase, lipoxygenase, and ATPase), and cell wall metabolism-related enzymes (beta-galactosidase, pectate lyase, pectinesterase, and polygalacturonase). On the basis of the accumulation profiles, a network of putatively interacting RNAs associated with bell pepper chilling was developed, which pointed to ncRNAs that could provide the foundation for further developing a more refined understanding of the molecular response to chilling injury

    <p>Novel insights into the mechanism for protic solvent promoting Pd/C-catalyzed hydrodechlorination of chlorinated organic compounds</p>

    No full text
    Solvent effects in liquid-phase hydrodechlorination (HDC) of chlorinated organic compounds (COCs) over Pd/C catalyst were systematically studied. For the HDC of 4-chlorobiphenyl (4-CBP) with triethylamine (Et3N), Pd/C exhibited much higher catalytic activity in protic solvents than that in aprotic polar and non-polar solvents, and a clear correlation between the HDC rate and polarity of protic solvents was observed. Moreover, water promoted Pd/C-catalyzed HDC of 4-CBP in homogeneous alcohol-water solvents and biphasic organic-water solvents with Et3N, and the HDC rate of 4-CBP increased with the increase of water content in the above solvent systems. Catalyst characterization (FT-IR and XRD) combined with solvent parameters and isotope labelling analysis were introduced to explain in-depth the solvent effects in the HDC of 4-CBP with Et3N. It was found that protic solvents would transfer active hydrogen atom (H*) via hydrogen bonding network or exchange their hydroxyl hydrogen with H*, which was beneficial to the stabilization of H* and interface HDC reaction. Thus, the higher HDC rate was achieved in solvent systems contained protic solvents with higher hydrogen-bond donor capability (alpha) values. On the other hand, non-polar and polar aprotic solvents had a negative effect on H* and mass transfer, and thus suppressed interface HDC reaction. Similar solvent effects were observed in Pd/C-catalyzed hydrogenation of unsaturated bonds-containing groups (nitryl group, carbonyl group, and carbon-carbon double bond). The results presented here would provide vital guidance for the rational selection of solvent systems for Pd/Ccatalyzed HDC of COCs and hydrogenation of unsaturated bonds-containing groups

    High-G Calibration Denoising Method for High-G MEMS Accelerometer Based on EMD and Wavelet Threshold

    No full text
    High-G MEMS accelerometers have been widely used in monitoring natural disasters and other fields. In order to improve the performance of High-G MEMS accelerometers, a denoising method based on the combination of empirical mode decomposition (EMD) and wavelet threshold is proposed. Firstly, EMD decomposition is performed on the output of the main accelerometer to obtain the intrinsic mode function (IMF). Then, the continuous mean square error rule is used to find energy cut-off point, and then the corresponding high frequency IMF component is denoised by wavelet threshold. Finally, the processed high-frequency IMF component is superposed with the low-frequency IMF component, and the reconstructed signal is denoised signal. Experimental results show that this method integrates the advantages of EMD and wavelet threshold and can retain useful signals to the maximum extent. The impact peak and vibration characteristics are 0.003% and 0.135% of the original signal, respectively, and it reduces the noise of the original signal by 96%

    Factors that influence the choice to work in rural township health centers among 4,669 clinical medical students from five medical universities in Guangxi, China

    No full text
    Purpose: To produce competent undergraduate-level medical doctors for rural township health centers (THCs), the Chinese government mandated that medical colleges in Central and Western China recruit rural-oriented, tuition-waived medical students (RTMSs) starting in 2010. This study aimed to identify and assess factors that influence the choice to work in rural township health centers among both RTMSs and other students from five medical universities in Guangxi, China. Methods: An internet-based self-administered questionnaire survey was conducted with medical students in Guangxi province. Multinomial logistic regression was used to identify factors related to the attitudes toward work in a rural township health center. Results: Among 4,669 medical students, 1,523 (33%) had a positive attitude and 2,574 (55%) had a neutral attitude toward working in THCs. Demographic characteristics, personal job concerns, and knowledge of THCs were associated with the choice of a career in THCs. The factors related to a positive attitude included the following: three-year program, a rural-oriented medical program, being male, an expectation of working in a county or township, a focus on medical career development, some perceived difficulty of getting a job, having family support, sufficient knowledge of THCs, optimism toward THC development, seeking lower working pressure, and a lower expected monthly salary. Conclusion: Male students in a three-year program or a rural-oriented tuition-waived medical education program were more likely to work in THCs. Selecting medical students through interviews to identify their family support and intentions to work in THCs would increase recruitment and retention. Establishing favorable policies and financial incentives to improve living conditions and the social status of rural physicians is necessary
    corecore