1 research outputs found
Deciphering the Substrate Specificity of SbnA, the Enzyme Catalyzing the First Step in Staphyloferrin B Biosynthesis
<i>Staphylococcus aureus</i> assembles the siderophore,
staphyloferrin B, from l-2,3-diaminopropionic acid (l-Dap), α-ketoglutarate, and citrate. Recently, SbnA and SbnB
were shown to produce l-Dap and α-ketoglutarate from <i>O</i>-phospho-l-serine (OPS) and l-glutamate.
SbnA is a pyridoxal 5′-phosphate (PLP)-dependent enzyme with
homology to <i>O</i>-acetyl-l-serine sulfhydrylases;
however, SbnA utilizes OPS instead of <i>O</i>-acetyl-l-serine (OAS), and l-glutamate serves as a nitrogen
donor instead of a sulfide. In this work, we examined how SbnA dictates
substrate specificity for OPS and l-glutamate using a combination
of X-ray crystallography, enzyme kinetics, and site-directed mutagenesis.
Analysis of SbnA crystals incubated with OPS revealed the structure
of the PLP-α-aminoacrylate intermediate. Formation of the intermediate
induced closure of the active site pocket by narrowing the channel
leading to the active site and forming a second substrate binding
pocket that likely binds l-glutamate. Three active site residues
were identified: Arg132, Tyr152, Ser185 that were essential for OPS
recognition and turnover. The Y152F/S185G SbnA double mutant was completely
inactive, and its crystal structure revealed that the mutations induced
a closed form of the enzyme in the absence of the α-aminoacrylate
intermediate. Lastly, l-cysteine was shown to be a competitive
inhibitor of SbnA by forming a nonproductive external aldimine with
the PLP cofactor. These results suggest a regulatory link between
siderophore and l-cysteine biosynthesis, revealing a potential
mechanism to reduce iron uptake under oxidative stress