17,086 research outputs found
Listen-and-Talk: Full-duplex Cognitive Radio Networks
In traditional cognitive radio networks, secondary users (SUs) typically
access the spectrum of primary users (PUs) by a two-stage "listen-before-talk"
(LBT) protocol, i.e., SUs sense the spectrum holes in the first stage before
transmit in the second stage. In this paper, we propose a novel
"listen-and-talk" (LAT) protocol with the help of the full-duplex (FD)
technique that allows SUs to simultaneously sense and access the vacant
spectrum. Analysis of sensing performance and SU's throughput are given for the
proposed LAT protocol. And we find that due to self-interference caused by FD,
increasing transmitting power of SUs does not always benefit to SU's
throughput, which implies the existence of a power-throughput tradeoff.
Besides, though the LAT protocol suffers from self-interference, it allows
longer transmission time, while the performance of the traditional LBT protocol
is limited by channel spatial correction and relatively shorter transmission
period. To this end, we also present an adaptive scheme to improve SUs'
throughput by switching between the LAT and LBT protocols. Numerical results
are provided to verify the proposed methods and the theoretical results.Comment: in proceeding of IEEE Globecom 201
Full-duplex MAC Protocol Design and Analysis
The idea of in-band full-duplex (FD) communications revives in recent years
owing to the significant progress in the self-interference cancellation and
hardware design techniques, offering the potential to double spectral
efficiency. The adaptations in upper layers are highly demanded in the design
of FD communication systems. In this letter, we propose a novel medium access
control (MAC) using FD techniques that allows transmitters to monitor the
channel usage while transmitting, and backoff as soon as collision happens.
Analytical saturation throughput of the FD-MAC protocol is derived with the
consideration of imperfect sensing brought by residual self- interference (RSI)
in the PHY layer. Both analytical and simulation results indicate that the
normalized saturation throughput of the proposed FD-MAC can significantly
outperforms conventional CSMA/CA under various network conditions
Full-Duplex Cognitive Radio: A New Design Paradigm for Enhancing Spectrum Usage
With the rapid growth of demand for ever-increasing data rate, spectrum
resources have become more and more scarce. As a promising technique to
increase the efficiency of the spectrum utilization, cognitive radio (CR)
technique has the great potential to meet such a requirement by allowing
un-licensed users to coexist in licensed bands. In conventional CR systems, the
spectrum sensing is performed at the beginning of each time slot before the
data transmission. This unfortunately results in two major problems: 1)
transmission time reduction due to sensing, and 2) sensing accuracy impairment
due to data transmission. To tackle these problems, in this paper we present a
new design paradigm for future CR by exploring the full-duplex (FD) techniques
to achieve the simultaneous spectrum sensing and data transmission. With FD
radios equipped at the secondary users (SUs), SUs can simultaneously sense and
access the vacant spectrum, and thus, significantly improve sensing
performances and meanwhile increase data transmission efficiency. The aim of
this article is to transform the promising conceptual framework into the
practical wireless network design by addressing a diverse set of challenges
such as protocol design and theoretical analysis. Several application scenarios
with FD enabled CR are elaborated, and key open research directions and novel
algorithms in these systems are discussed
Listen-and-Talk: Protocol Design and Analysis for Full-duplex Cognitive Radio Networks
In traditional cognitive radio networks, secondary users (SUs) typically
access the spectrum of primary users (PUs) by a two-stage "listen-before-talk"
(LBT) protocol, i.e., SUs sense the spectrum holes in the first stage before
transmitting in the second. However, there exist two major problems: 1)
transmission time reduction due to sensing, and 2) sensing accuracy impairment
due to data transmission. In this paper, we propose a "listen-and-talk" (LAT)
protocol with the help of full-duplex (FD) technique that allows SUs to
simultaneously sense and access the vacant spectrum. Spectrum utilization
performance is carefully analyzed, with the closed-form spectrum waste ratio
and collision ratio with the PU provided. Also, regarding the secondary
throughput, we report the existence of a tradeoff between the secondary
transmit power and throughput. Based on the power-throughput tradeoff, we
derive the analytical local optimal transmit power for SUs to achieve both high
throughput and satisfying sensing accuracy. Numerical results are given to
verify the proposed protocol and the theoretical results
Prediction-error of Prediction Error (PPE)-based Reversible Data Hiding
This paper presents a novel reversible data hiding (RDH) algorithm for
gray-scaled images, in which the prediction-error of prediction error (PPE) of
a pixel is used to carry the secret data. In the proposed method, the pixels to
be embedded are firstly predicted with their neighboring pixels to obtain the
corresponding prediction errors (PEs). Then, by exploiting the PEs of the
neighboring pixels, the prediction of the PEs of the pixels can be determined.
And, a sorting technique based on the local complexity of a pixel is used to
collect the PPEs to generate an ordered PPE sequence so that, smaller PPEs will
be processed first for data embedding. By reversibly shifting the PPE histogram
(PPEH) with optimized parameters, the pixels corresponding to the altered PPEH
bins can be finally modified to carry the secret data. Experimental results
have implied that the proposed method can benefit from the prediction procedure
of the PEs, sorting technique as well as parameters selection, and therefore
outperform some state-of-the-art works in terms of payload-distortion
performance when applied to different images.Comment: There has no technical difference to previous versions, but rather
some minor word corrections. A 2-page summary of this paper was accepted by
ACM IH&MMSec'16 "Ongoing work session". My homepage: hzwu.github.i
- …