1,704 research outputs found

    A Chance Constrained Programming Model for Reliable Emergency Vehicles Relocation Problem

    Get PDF
    AbstractEmergency vehicles relocation is one mechanism of increasing preparedness for potential emergencies. This paper addresses the problem of designing reliable emergency vehicles relocation system. Under this respect, we extend the DYNACO model with chance-constrained programming framework for the optimal redeployment of emergency vehicles. The model deals with the availability of emergency vehicles by approximate hypercube. In addition, other random elements including travel time and emergency demand are taken into account in the model. Solution procedure based on genetic algorithm and Monte-Carlo simulation is developed to solve the stochastic model. Computational experiences are reported to illustrate the performance and the effectiveness of the proposed solution

    Single-photon transport and mechanical NOON state generation in microcavity optomechanics

    Full text link
    We investigate the single-photon transport in a single-mode optical fiber coupled to an optomechanical system in the single-photon strong-coupling regime. The single-photon transmission amplitude is analytically obtained with a real-space approach and the effects of thermal noises are studied via master-equation simulations. The results provide an explicit understanding of optomechanical interaction and offer a useful guide for manipulating single photons in optomechanical systems. Based on the theoretical framework, we further propose a scheme to generate the mechanical NOON states with arbitrary phonon numbers by measuring the sideband photons. The probability for generating the NOON state with five phonons is over 0.15.Comment: 13 pages, 6 figure

    Monad: Towards Cost-effective Specialization for Chiplet-based Spatial Accelerators

    Full text link
    Advanced packaging offers a new design paradigm in the post-Moore era, where many small chiplets can be assembled into a large system. Based on heterogeneous integration, a chiplet-based accelerator can be highly specialized for a specific workload, demonstrating extreme efficiency and cost reduction. To fully leverage this potential, it is critical to explore both the architectural design space for individual chiplets and different integration options to assemble these chiplets, which have yet to be fully exploited by existing proposals. This paper proposes Monad, a cost-aware specialization approach for chiplet-based spatial accelerators that explores the tradeoffs between PPA and fabrication costs. To evaluate a specialized system, we introduce a modeling framework considering the non-uniformity in dataflow, pipelining, and communications when executing multiple tensor workloads on different chiplets. We propose to combine the architecture and integration design space by uniformly encoding the design aspects for both spaces and exploring them with a systematic ML-based approach. The experiments demonstrate that Monad can achieve an average of 16% and 30% EDP reduction compared with the state-of-the-art chiplet-based accelerators, Simba and NN-Baton, respectively.Comment: To be published in ICCAD 202

    Enhancing the accuracy of rotational velocity measurement for vortex beams within the optimal ability of phase retrieval algorithm

    Get PDF
    The measurement of the rotational velocity using the rotational Doppler effect (RDE) of a vortex beam is easily affected by atmospheric turbulence, leading to dispersed orbital angular momentum (OAM), and reduced measurement accuracy. This study investigates the optimal ability of the Gerchberg-Saxton (GS) phase retrieval algorithm to compensate for the optical field and enhance the velocity measurement accuracy within the optimal range of intrinsic parameters, such as the number of GS iterations, and extrinsic parameters, such as the atmospheric turbulence intensity and beam properties. Through detailed theoretical and simulation analyses, we demonstrate the outstanding effectiveness of the GS algorithm in improving the velocity measurement accuracy. Simulations conducted for a system-target distance of zS-T = 500 m show a 29.88% improvement in the velocity measurement accuracy and a 1.03-fold increase in the spectral signal-to-noise ratio (SSNR) within the optimal range. It showcases advantages that set it apart from other methods. This study reveals the threshold of the ability of GS algorithm to significantly enhance the rotational velocity measurement accuracy, providing valuable insights to precision measurements of rotational velocities in free-space applications
    • …
    corecore