3,944 research outputs found

    Hydro-economic modeling of climate change impacts in Ethiopia

    Get PDF
    Ethiopia is susceptible to frequent climate extremes such as disastrous droughts and floods. These disastrous climatic events, which have caused significant adverse effects on the country’s economy and society, are expected to become more pronounced in the future under climate change. To identify the potential threat of climate change to the Ethiopian economy, this study analyzes three major factors that are changing under global warming: water availability under higher temperatures and changing precipitation patterns, the impact of changing precipitation patterns on flooding, and the potential impact on crop production of the carbon dioxide (CO2) fertilization effect. These issues are analyzed based on an existing multi-market-sector model for the Ethiopian economy, with a focus on agriculture. Our analysis finds that the major impact of climate change on Ethiopia’s economy will result from more frequent occurrence of extreme hydrologic events, which cause losses in both the agricultural and nonagricultural sectors. To adapt to these long-term changes, Ethiopia should invest in enhanced water control to expand irrigation and improve flood protection.carbon dioxide (CO2) fertilization effect, Climate change, Droughts, floods, Global warming, hydro-economic modeling, hydrologic events,

    Large density amplification measured on jets ejected from a magnetized plasma gun

    Get PDF
    Observation of a large density amplification in the collimating plasma jet ejected from a coplanar coaxial plasma gun is reported. The jet velocity is ~30 km s^-1 and the electron density increases from ~10^20 to 10^(22–23) m^-3. In previous spheromak experiments, electron density of the order 10^(19–21) m^-3 had been measured in the flux conserver region, but no density measurement had been reported for the source gun region. The coplanar geometry of our electrodes permits direct observation of the entire plasma dynamics including the source region. Analysis of Stark broadened spectral lines shows that the electron density increases by a factor of 100 as the jet collimates, with a peak density of up to 10^(22–23) m^-3. The observed density amplification is interpreted according to an MHD theory that explains collimation of current-carrying plasma-filled magnetic flux tubes. Issues affecting interpretation of Stark broadened line profiles and the possibility of using the high-density plasma jet for tokamak fuel injection are discussed

    Identification of the Sequence of Steps Intrinsic to Spheromak Formation

    Get PDF
    A planar coaxial electrostatic helicity source is used for studying the relaxation process intrinsic to spheromak formation Experimental observations reveal that spheromak formation involves: (1) breakdown and creation of a number of distinct, arched, filamentary, plasma-filled flux loops that span from cathode to anode gas nozzles, (2) merging of these loops to form a central column, (3) jet-like expansion of the central column, (4) kink instability of the central column, (5) conversion of toroidal flux to poloidal flux by the kink instability. Steps 1 and 3 indicate that spheromak formation involves an MHD pumping of plasma from the gas nozzles into the magnetic flux tube linking the nozzles. In order to measure this pumping, the gas puffing system has been modified to permit simultaneous injection of different gas species into the two ends of the flux tube linking the wall. Gated CCD cameras with narrow-band optical filters are used to track the pumped flows

    The Role of Chaos in One-Dimensional Heat Conductivity

    Full text link
    We investigate the heat conduction in a quasi 1-D gas model with various degree of chaos. Our calculations indicate that the heat conductivity κ\kappa is independent of system size when the chaos of the channel is strong enough. The different diffusion behaviors for the cases of chaotic and non-chaotic channels are also studied. The numerical results of divergent exponent α\alpha of heat conduction and diffusion exponent β\beta are in consistent with the formula α=2−2/β\alpha=2-2/\beta. We explore the temperature profiles numerically and analytically, which show that the temperature jump is primarily attributed to superdiffusion for both non-chaotic and chaotic cases, and for the latter case of superdiffusion the finite-size affects the value of β\beta remarkably.Comment: 6 pages, 7 figure
    • …
    corecore