21,559 research outputs found

    Identification of the Sequence of Steps Intrinsic to Spheromak Formation

    Get PDF
    A planar coaxial electrostatic helicity source is used for studying the relaxation process intrinsic to spheromak formation Experimental observations reveal that spheromak formation involves: (1) breakdown and creation of a number of distinct, arched, filamentary, plasma-filled flux loops that span from cathode to anode gas nozzles, (2) merging of these loops to form a central column, (3) jet-like expansion of the central column, (4) kink instability of the central column, (5) conversion of toroidal flux to poloidal flux by the kink instability. Steps 1 and 3 indicate that spheromak formation involves an MHD pumping of plasma from the gas nozzles into the magnetic flux tube linking the nozzles. In order to measure this pumping, the gas puffing system has been modified to permit simultaneous injection of different gas species into the two ends of the flux tube linking the wall. Gated CCD cameras with narrow-band optical filters are used to track the pumped flows

    Large density amplification measured on jets ejected from a magnetized plasma gun

    Get PDF
    Observation of a large density amplification in the collimating plasma jet ejected from a coplanar coaxial plasma gun is reported. The jet velocity is ~30 km s^-1 and the electron density increases from ~10^20 to 10^(22–23) m^-3. In previous spheromak experiments, electron density of the order 10^(19–21) m^-3 had been measured in the flux conserver region, but no density measurement had been reported for the source gun region. The coplanar geometry of our electrodes permits direct observation of the entire plasma dynamics including the source region. Analysis of Stark broadened spectral lines shows that the electron density increases by a factor of 100 as the jet collimates, with a peak density of up to 10^(22–23) m^-3. The observed density amplification is interpreted according to an MHD theory that explains collimation of current-carrying plasma-filled magnetic flux tubes. Issues affecting interpretation of Stark broadened line profiles and the possibility of using the high-density plasma jet for tokamak fuel injection are discussed

    Supernova pencil beam survey

    Get PDF
    Type Ia supernovae (SNe Ia) can be calibrated to be good standard candles at cosmological distances. We propose a supernova pencil beam survey that could yield between dozens to hundreds of SNe Ia in redshift bins of 0.1 up to z=1.5z=1.5, which would compliment space based SN searches, and enable the proper consideration of the systematic uncertainties of SNe Ia as standard candles, in particular, luminosity evolution and gravitational lensing. We simulate SNe Ia luminosities by adding weak lensing noise (using empirical fitting formulae) and scatter in SN Ia absolute magnitudes to standard candles placed at random redshifts. We show that flux-averaging is powerful in reducing the combined noise due to gravitational lensing and scatter in SN Ia absolute magnitudes. The SN number count is not sensitive to matter distribution in the universe; it can be used to test models of cosmology or to measure the SN rate. The SN pencil beam survey can yield a wealth of data which should enable accurate determination of the cosmological parameters and the SN rate, and provide valuable information on the formation and evolution of galaxies. The SN pencil beam survey can be accomplished on a dedicated 4 meter telescope with a square degree field of view. This telescope can be used to conduct other important observational projects compatible with the SN pencil beam survey, such as QSOs, Kuiper belt objects, and in particular, weak lensing measurements of field galaxies, and the search for gamma-ray burst afterglows.Comment: Final version, to appear in ApJ, 531, #2 (March 10, 2000). 22 pages including 5 figures. Improved presentatio

    The Neutral Hydrogen Distribution in Merging Galaxies: Differences between Stellar and Gaseous Tidal Morphologies

    Get PDF
    We have mapped the neutral atomic gas (HI) in the three disk-disk merger systems NGC 520, Arp 220, and Arp 299. These systems differ from the majority of the mergers mapped in HI, in that their stellar and gaseous tidal features do not coincide. In particular, they exhibit large stellar tidal features with little if any accompanying neutral gas and large gas-rich tidal features with little if any accompanying starlight. On smaller scales, there are striking anti-correlations where the gaseous and stellar tidal features appear to cross. We explore several possible causes for these differences, including dust obscuration, ram pressure stripping, and ionization effects. No single explanation can account for all of the observed differences. The fact that each of these systems shows evidence for a starburst driven superwind expanding in the direction of the most striking anti-correlations leads us to suggest that the superwind is primarily responsible for the observed differences, either by sweeping the features clear of gas via ram pressure, or by excavating a clear sightline towards the starburst and allowing UV photons to ionize regions of the tails.Comment: 16 pages, 5 figures, uses emulateapj.sty. To appear in the March 2000 issue of AJ. Version with full resolution figures is available via http://www.cv.nrao.edu/~jhibbard/HIdisp/HIdisp.htm

    Chaos at the border of criticality

    Full text link
    The present paper points out to a novel scenario for formation of chaotic attractors in a class of models of excitable cell membranes near an Andronov-Hopf bifurcation (AHB). The mechanism underlying chaotic dynamics admits a simple and visual description in terms of the families of one-dimensional first-return maps, which are constructed using the combination of asymptotic and numerical techniques. The bifurcation structure of the continuous system (specifically, the proximity to a degenerate AHB) endows the Poincare map with distinct qualitative features such as unimodality and the presence of the boundary layer, where the map is strongly expanding. This structure of the map in turn explains the bifurcation scenarios in the continuous system including chaotic mixed-mode oscillations near the border between the regions of sub- and supercritical AHB. The proposed mechanism yields the statistical properties of the mixed-mode oscillations in this regime. The statistics predicted by the analysis of the Poincare map and those observed in the numerical experiments of the continuous system show a very good agreement.Comment: Chaos: An Interdisciplinary Journal of Nonlinear Science (tentatively, Sept 2008

    Polyfluorene as a model system for space-charge-limited conduction

    Full text link
    Ethyl-hexyl substituted polyfluorene (PF) with its high level of molecular disorder can be described very well by one-carrier space-charge-limited conduction for a discrete set of trap levels with energy ∼\sim 0.5 eV above the valence band edge. Sweeping the bias above the trap-filling limit in the as-is polymer generates a new set of exponential traps, which is clearly seen in the density of states calculations. The trapped charges in the new set of traps have very long lifetimes and can be detrapped by photoexcitation. Thermal cycling the PF film to a crystalline phase prevents creation of additional traps at higher voltages.Comment: 13 pages, 4 figures. Physical Review B (accepted, 2007

    Detection of CO (2-1) and Radio Continuum Emission from the z = 4.4 QSO BRI 1335-0417

    Get PDF
    We have detected redshifted CO (2-1) emission at 43 GHz and radio continuum emission at 1.47 and 4.86 GHz from the z = 4.4 QSO BRI 1335-0417 using the Very Large Array. The CO data imply optically thick emission from warm (>30 K) molecular gas with a total mass, M(H_2), of 1.5+/-0.3 x10^{11} M_solar, using the Galactic gas mass-to-CO luminosity conversion factor. We set an upper limit to the CO source size of 1.1", and a lower limit of 0.23"x(T_ex/50K)^{-1/2}, where T_ex is the gas excitation temperature. We derive an upper limit to the dynamical mass of 2x10^{10} x sin^{-2} i M_solar, where i is the disk inclination angle. To reconcile the gas mass with the dynamical mass requires either a nearly face-on disk (i < 25deg), or a gas mass-to-CO luminosity conversion factor significantly lower than the Galactic value. The spectral energy distribution from the radio to the rest-frame infrared of BRI 1335-0417 is consistent with that expected from a nuclear starburst galaxy, with an implied massive star formation rate of 2300+/-600 M_solar yr^{-1}.Comment: standard AAS LATEX forma
    • …
    corecore