21,869 research outputs found
Not a galaxy: IRAS 04186+5143, a new young stellar cluster in the outer Galaxy
We report the discovery of a new young stellar cluster in the outer Galaxy
located at the position of an IRAS PSC source that has been previously
mis-identified as an external galaxy. The cluster is seen in our near-infrared
imaging towards IRAS 04186+5143 and in archive Spitzer images confirming the
young stellar nature of the sources detected. There is also evidence of
sub-clustering seen in the spatial distributions of young stars and of gas and
dust.
Near- and mid-infrared photometry indicates that the stars exhibit colours
compatible with reddening by interstellar and circumstellar dust and are likely
to be low- and intermediate-mass YSOs with a large proportion of Class I YSOs.
Ammonia and CO lines were detected, with the CO emission well centred near
the position of the richest part of the cluster. The velocity of the CO and
NH lines indicates that the gas is Galactic and located at a distance of
about 5.5 kpc, in the outer Galaxy.
Herschel data of this region characterise the dust environment of this
molecular cloud core where the young cluster is embedded. We derive masses,
luminosities and temperatures of the molecular clumps where the young stars
reside and discuss their evolutionary stages.Comment: 14 pages, 15 figure
Model-Independent Constraints on Dark Energy Density from Flux-averaging Analysis of Type Ia Supernova Data
We reconstruct the dark energy density as a free function from
current type Ia supernova (SN Ia) data (Tonry et al. 2003; Barris et al. 2003;
Knop et al. 2003), together with the Cosmic Microwave Background (CMB) shift
parameter from CMB data (WMAP, CBI, and ACBAR), and the large scale structure
(LSS) growth factor from 2dF galaxy survey data. We parametrize as
a continuous function, given by interpolating its amplitudes at equally spaced
values in the redshift range covered by SN Ia data, and a constant at
larger (where is only weakly constrained by CMB data). We
assume a flat universe, and use the Markov Chain Monte Carlo (MCMC) technique
in our analysis. We find that the dark energy density is constant
for 0 \la z \la 0.5 and increases with redshift for 0.5 \la z \la 1 at
68.3% confidence level, but is consistent with a constant at 95% confidence
level. For comparison, we also give constraints on a constant equation of state
for the dark energy.
Flux-averaging of SN Ia data is required to yield cosmological parameter
constraints that are free of the bias induced by weak gravitational lensing
\citep{Wang00b}. We set up a consistent framework for flux-averaging analysis
of SN Ia data, based on \cite{Wang00b}. We find that flux-averaging of SN Ia
data leads to slightly lower and smaller time-variation in
. This suggests that a significant increase in the number of SNe Ia
from deep SN surveys on a dedicated telescope \citep{Wang00a} is needed to
place a robust constraint on the time-dependence of the dark energy density.Comment: Slightly revised in presentation, ApJ accepted. One color figure
shows rho_X(z) reconstructed from dat
The geometrically-averaged density of states as a measure of localization
Motivated by current interest in disordered systems of interacting electrons,
the effectiveness of the geometrically averaged density of states,
, as an order parameter for the Anderson transition is
examined. In the context of finite-size systems we examine complications which
arise from finite energy resolution. Furthermore we demonstrate that even in
infinite systems a decline in with increasing disorder
strength is not uniquely associated with localization.Comment: 8 pages, 8 figures; revised text and figure
Nonlinear feedback control of multiple robot arms
Multiple coordinated robot arms are modeled by considering the arms: (1) as closed kinematic chains, and (2) as a force constrained mechanical system working on the same object simultaneously. In both formulations a new dynamic control method is discussed. It is based on a feedback linearization and simultaneous output decoupling technique. Applying a nonlinear feedback and a nonlinear coordinate transformation, the complicated model of the multiple robot arms in either formulation is converted into a linear and output decoupled system. The linear system control theory and optimal control theory are used to design robust controllers in the task space. The first formulation has the advantage of automatically handling the coordination and load distribution among the robot arms. In the second formulation, by choosing a general output equation, researchers can superimpose the position and velocity error feedback with the force-torque error feedback in the task space simultaneously
Gamma-Ray Burst Environments and Progenitors
Likely progenitors for the GRBs (gamma-ray bursts) are the mergers of compact
objects or the explosions of massive stars. These two cases have distinctive
environments for the GRB afterglow: the compact object explosions occur in the
ISM (interstellar medium) and those of massive stars occur in the preburst
stellar wind. We calculate the expected afterglow for a burst in a Wolf-Rayet
star wind and compare the results to those for constant, interstellar density.
The optical afterglow for the wind case is generally expected to decline more
steeply than in the constant density case, but this effect may be masked by
variations in electron spectral index, and the two cases have the same
evolution in the cooling regime. Observations of the concurrent radio and
optical/X-ray evolution are especially useful for distinguishing between the
two cases. The different rates of decline of the optical and X-ray afterglows
of GRB 990123 suggest constant density interaction for this case. We have
previously found strong evidence for wind interaction in SN 1998bw/GRB 980425
and here present a wind model for GRB 980519. We thus suggest that there are
both wind type GRB afterglows with massive star progenitors and ISM type
afterglows with compact binary star progenitors. The wind type bursts are
likely to be accompanied by a supernova, but not the ISM type.Comment: 11 pages, 1 figure, revised version, ApJ Letters, in pres
Chaos at the border of criticality
The present paper points out to a novel scenario for formation of chaotic
attractors in a class of models of excitable cell membranes near an
Andronov-Hopf bifurcation (AHB). The mechanism underlying chaotic dynamics
admits a simple and visual description in terms of the families of
one-dimensional first-return maps, which are constructed using the combination
of asymptotic and numerical techniques. The bifurcation structure of the
continuous system (specifically, the proximity to a degenerate AHB) endows the
Poincare map with distinct qualitative features such as unimodality and the
presence of the boundary layer, where the map is strongly expanding. This
structure of the map in turn explains the bifurcation scenarios in the
continuous system including chaotic mixed-mode oscillations near the border
between the regions of sub- and supercritical AHB. The proposed mechanism
yields the statistical properties of the mixed-mode oscillations in this
regime. The statistics predicted by the analysis of the Poincare map and those
observed in the numerical experiments of the continuous system show a very good
agreement.Comment: Chaos: An Interdisciplinary Journal of Nonlinear Science
(tentatively, Sept 2008
Stability of f(R) black holes
We investigate the stability of (Schwarzschild) black hole obtained
from the gravity. It is difficult to carry out the perturbation analysis
around the black hole because the linearized Einstein equation is fourth order
in gravity. In order to resolve this difficulty, we transform
gravity into the scalar-tensor theory by introducing two auxiliary scalars.
In this case, the linearized curvature scalar becomes a scalaron, showing
that all linearized equations are second order, which are the same equations
for the massive Brans-Dicke theory.
It turns out that the black hole is stable against the external
perturbations if the scalaron does not have a tachyonic mass.Comment: 16 pages, no figures, version to appear in Physical Review
Tachyon condensation and off-shell gravity/gauge duality
We investigate quasilocal tachyon condensation by using gravity/gauge
duality. In order to cure the IR divergence due to a tachyon, we introduce two
regularization schemes: AdS space and a d=10 Schwarzschild black hole in a
cavity. These provide stable canonical ensembles and thus are good candidates
for the endpoint of tachyon condensation. Introducing the Cardy-Verlinde
formula, we establish the on-shell gravity/gauge duality. We propose that the
stringy geometry resulting from the off-shell tachyon dynamics matches onto the
off-shell AdS black hole, where "off-shell" means non-equilibrium
configuration. The instability induced by condensation of a tachyon behaves
like an off-shell black hole and evolves toward a large stable black hole. The
off-shell free energy and its derivative (-function) are used to show
the off-shell gravity/gauge duality for the process of tachyon condensation.
Further, d=10 Schwarzschild black hole in a cavity is considered for the
Hagedorn transition as a possible explanation of the tachyon condensation.Comment: 28 pages, 13 eps figures, version to appear in IJMP
- …