6,097 research outputs found
Color Magnitude Relation and Morphology of Low-Redshift ULIRGs in SDSS
We present color-magnitude and morphological analysis of 54 low-redshift
ULIRGs, a subset of the IRAS 1Jy sample (Kim & Sanders, 1998), in the SDSS. The
ULIRGs are on average 1 magnitude brighter in M0.1r than the SDSS galaxies
within the same redshift range. The majority of the ULIRGs (~87%) have the
colors typical of the blue cloud, and only 4 sources (~7%) are located in the
red sequence. While ULIRGs are popularly thought to be precursors to a QSO
phase, we find few (~6%) in the "green valley" where the majority of the X-ray
and IR selected AGNs are found, and none of which harbors an AGN. For the 14
previously spectroscopic identified AGNs (~28%), we perform PSF subtractions
and find that on average the central point sources contribute less than one
third to the total luminosity, and that their high optical luminosities and
overall blue colors are apparently the result of star formation activity of the
host galaxies. Visual inspection of the SDSS images reveals a wide range of
disturbed morphologies. A detailed morphology analysis using Gini and M20
coefficients shows that slightly less than one half (~42% in g band) of the
ULIRGs are located in the region where most local mergers are found. The
heterogeneous distribution of ULIRGs in the G-M20 space is qualitatively
consistent with the results found by numerical simulations of disk-disk
mergers. Our study also shows that the measured morphological parameters are
systematically affected by the SNR and thus the merging galaxies can appear at
various regions in the G-M20 space. In general, our results reinforce the view
that ULIRGs contain young stellar populations and are mergers in progress. Our
study provides a uniform comparison sample for studying ULIRGs at higher
redshifts such as Spitzer mid-IR selected ULIRGs at z=1~2 and submm galaxies.Comment: 42 pages, 11 figures, ApJ accepte
Managerial Valuation of Applicant Credentials and Personal Traits in Hiring Decisions
We study how managers value applicant credentials and personal traits in hiring decisions. Using the ordered probit model, we confirm previous results – managers rank applicant traits higher than credentials. However, we also uncover patterns not previously observed – managerial valuations of some of these characteristics are dependent on managers' perception of the overall state of the economy, on firm and immediate workplace characteristics, and on managers' personal characteristics. Manager valuations of credentials vary with a large number of factors; this is not so for applicant personal traits. This is not surprising as most managers view the five traits considered "as extremely important."personality, credentials, hiring practices, ordered probit
The Stock of Private Real Estate Capital in U.S. Metropolitan Areas
In this paper, we describe the construction of estimates of private real estate capital for each of 242 MSAs, annually, for 1982 through 1994. We compute three such series: (1) total private real estate capital (residential and nonresidential); (2) private single-family residential capital; and (3) private income property capital (multifamily housing plus nonresidential real estate , or (1) less (2)). We then model the determinants of each series, and use the results to predict the value of the capital stock for a larger set of 295 MSAs.
Stress-rupture behavior of small diameter polycrystalline alumina fibers
Continuous length polycrystalline alumina fibers are candidates as reinforcement in high temperature composite materials. Interest therefore exists in characterizing the thermomechanical behavior of these materials, obtaining possible insights into underlying mechanisms, and understanding fiber performance under long term use. Results are reported on the time-temperature dependent strength behavior of Nextel 610 and Fiber FP alumina fibers with grain sizes of 100 and 300 nm, respectively. Below 1000 C and 100 hours, Nextel 610 with the smaller grain size had a greater fast fracture and rupture strength than Fiber FP. The time exponents for stress-rupture of these fibers were found to decrease from approximately 13 at 900 C to below 3 near 1050 C, suggesting a transition from slow crack growth to creep rupture as the controlling fracture mechanism. For both fiber types, an effective activation energy of 690 kJ/mol was measured for rupture. This allowed stress-rupture predictions to be made for extended times at use temperatures below 1000 C
Non-Stationary Random Process for Large-Scale Failure and Recovery of Power Distributions
A key objective of the smart grid is to improve reliability of utility
services to end users. This requires strengthening resilience of distribution
networks that lie at the edge of the grid. However, distribution networks are
exposed to external disturbances such as hurricanes and snow storms where
electricity service to customers is disrupted repeatedly. External disturbances
cause large-scale power failures that are neither well-understood, nor
formulated rigorously, nor studied systematically. This work studies resilience
of power distribution networks to large-scale disturbances in three aspects.
First, a non-stationary random process is derived to characterize an entire
life cycle of large-scale failure and recovery. Second, resilience is defined
based on the non-stationary random process. Close form analytical expressions
are derived under specific large-scale failure scenarios. Third, the
non-stationary model and the resilience metric are applied to a real life
example of large-scale disruptions due to Hurricane Ike. Real data on
large-scale failures from an operational network is used to learn time-varying
model parameters and resilience metrics.Comment: 11 pages, 8 figures, submitted to IEEE Sig. Pro
Spectral Line De-confusion in an Intensity Mapping Survey
Spectral line intensity mapping has been proposed as a promising tool to
efficiently probe the cosmic reionization and the large-scale structure.
Without detecting individual sources, line intensity mapping makes use of all
available photons and measures the integrated light in the source confusion
limit, to efficiently map the three-dimensional matter distribution on large
scales as traced by a given emission line. One particular challenge is the
separation of desired signals from astrophysical continuum foregrounds and line
interlopers. Here we present a technique to extract large-scale structure
information traced by emission lines from different redshifts, embedded in a
three-dimensional intensity mapping data cube. The line redshifts are
distinguished by the anisotropic shape of the power spectra when projected onto
a common coordinate frame. We consider the case where high-redshift [CII] lines
are confused with multiple low-redshift CO rotational lines. We present a
semi-analytic model for [CII] and CO line estimates based on the cosmic
infrared background measurements, and show that with a modest instrumental
noise level and survey geometry, the large-scale [CII] and CO power spectrum
amplitudes can be successfully extracted from a confusion-limited data set,
without external information. We discuss the implications and limits of this
technique for possible line intensity mapping experiments.Comment: 13 pages, 14 figures, accepted by Ap
Methods for producing silicon carbide architectural preforms
Methods are disclosed for producing architectural preforms and high-temperature composite structures containing high-strength ceramic fibers with reduced preforming stresses within each fiber, with an in-situ grown coating on each fiber surface, with reduced boron within the bulk of each fiber, and with improved tensile creep and rupture resistance properties for each fiber. The methods include the steps of preparing an original sample of a preform formed from a pre-selected high-strength silicon carbide ceramic fiber type, placing the original sample in a processing furnace under a pre-selected preforming stress state and thermally treating the sample in the processing furnace at a pre-selected processing temperature and hold time in a processing gas having a pre-selected composition, pressure, and flow rate. For the high-temperature composite structures, the method includes additional steps of depositing a thin interphase coating on the surface of each fiber and forming a ceramic or carbon-based matrix within the sample
- …