229 research outputs found

    Coverage Goal Selector for Combining Multiple Criteria in Search-Based Unit Test Generation

    Full text link
    Unit testing is critical to the software development process, ensuring the correctness of basic programming units in a program (e.g., a method). Search-based software testing (SBST) is an automated approach to generating test cases. SBST generates test cases with genetic algorithms by specifying the coverage criterion (e.g., branch coverage). However, a good test suite must have different properties, which cannot be captured using an individual coverage criterion. Therefore, the state-of-the-art approach combines multiple criteria to generate test cases. Since combining multiple coverage criteria brings multiple objectives for optimization, it hurts the test suites' coverage for certain criteria compared with using the single criterion. To cope with this problem, we propose a novel approach named \textbf{smart selection}. Based on the coverage correlations among criteria and the subsumption relationships among coverage goals, smart selection selects a subset of coverage goals to reduce the number of optimization objectives and avoid missing any properties of all criteria. We conduct experiments to evaluate smart selection on 400400 Java classes with three state-of-the-art genetic algorithms under the 22-minute budget. On average, smart selection outperforms combining all goals on 65.1%65.1\% of the classes having significant differences between the two approaches. Secondly, we conduct experiments to verify our assumptions about coverage criteria relationships. Furthermore, we experiment with different budgets of 55, 88, and 1010 minutes, confirming the advantage of smart selection over combining all goals.Comment: arXiv admin note: substantial text overlap with arXiv:2208.0409

    Pathologically Activated Neuroprotection via Uncompetitive Blockade of \u3cem\u3eN\u3c/em\u3e-Methyl-d-aspartate Receptors with Fast Off-rate by Novel Multifunctional Dimer Bis(propyl)-cognitin

    Get PDF
    Uncompetitive N-methyl-d-aspartate (NMDA) receptor antagonists with fast off-rate (UFO) may represent promising drug candidates for various neurodegenerative disorders. In this study, we report that bis(propyl)-cognitin, a novel dimeric acetylcholinesterase inhibitor and γ-aminobutyric acid subtype A receptor antagonist, is such an antagonist of NMDA receptors. In cultured rat hippocampal neurons, we demonstrated that bis(propyl)-cognitin voltage-dependently, selectively, and moderately inhibited NMDA-activated currents. The inhibitory effects of bis(propyl)-cognitin increased with the rise in NMDA and glycine concentrations. Kinetics analysis showed that the inhibition was of fast onset and offset with an off-rate time constant of 1.9 s. Molecular docking simulations showed moderate hydrophobic interaction between bis(propyl)-cognitin and the MK-801 binding region in the ion channel pore of the NMDA receptor. Bis(propyl)-cognitin was further found to compete with [3H]MK-801 with a Ki value of 0.27 μm, and the mutation of NR1(N616R) significantly reduced its inhibitory potency. Under glutamate-mediated pathological conditions, bis(propyl)-cognitin, in contrast to bis(heptyl)-cognitin, prevented excitotoxicity with increasing effectiveness against escalating levels of glutamate and much more effectively protected against middle cerebral artery occlusion-induced brain damage than did memantine. More interestingly, under NMDA receptor-mediated physiological conditions, bis(propyl)-cognitin enhanced long-term potentiation in hippocampal slices, whereas MK-801 reduced and memantine did not alter this process. These results suggest that bis(propyl)-cognitin is a UFO antagonist of NMDA receptors with moderate affinity, which may provide a pathologically activated therapy for various neurodegenerative disorders associated with NMDA receptor dysregulation

    The value of cuproptosis-related differential genes in guiding prognosis and immune status in patients with skin cutaneous melanoma

    Get PDF
    Background: Skin cutaneous melanoma (SKCM) is one of the most common cutaneous malignancies, which incidence is increasing. Cuproptosis is a new type of programming cell death recently reported, which may affect the progression of SKCM.Method: The mRNA expression data of melanoma were obtained from the Gene Expression Omnibus and the Cancer Genome Atlas databases. We constructed a prognostic model according to the cuproptosis-related differential genes in SKCM. Finally, real-time quantitative PCR was performed to verify the expression of cuproptosis-related differential genes in patients with different stages of cutaneous melanoma.Results: We detected 767 cuproptosis-related differential genes based on 19 cuproptosis-related genes, and screened out 7 differential genes to construct a prognostic model, which including three high-risk differential genes (SNAI2, RAP1GAP, BCHE), and four low-risk differential genes (JSRP1, HAPLN3, HHEX, ERAP2). Kaplan-Meier analysis indicated that SKCM patients with low-risk differential genes signals had better prognosis. The Encyclopedia of Genomes results manifested that cuproptosis-related differential genes are not only involved in T cell receptor signaling channel, natural killer cell mediated cytotoxicity, but also chemokine signaling pathway and B cell receptor signaling pathway. In our risk scoring model, the receiver operating characteristic (ROC) values of the three-time nodes are 0.669 (1-year), 0.669 (3-year) and 0.685 (5-year), respectively. Moreover, the tumor burden mutational and immunology function, cell stemness characteristics and drug sensitivity have significant differences between low-risk group and high-risk group. The mRNA level of SNAI2, RAP1GAP and BCHE in stage Ⅲ+Ⅳ SKCM patients was significantly higher than that in stage Ⅰ+Ⅱ patients, while the level of JSRP1, HAPLN3, HHEX and ERAP2 in stage Ⅰ+Ⅱ SKCM patients was more remarkable higher than that in stage Ⅲ+Ⅳ SKCM patients.Conclusion: In summary, we suggest that cuproptosis can not only regulate the tumor immune microenvironment but also affect the prognosis of SKCM patients, and may offer a basic theory for SKCM patients survival studies and clinical decision-making with potentially therapeutic drugs

    Requirement of Cognate CD4+ T-Cell Recognition for the Regulation of Allospecific CTL by Human CD4+CD127−CD25+FOXP3+ Cells Generated in MLR

    Get PDF
    Although immunoregulation of alloreactive human CTLs has been described, the direct influence of CD4+ Tregs on CD8+ cytotoxicity and the interactive mechanisms have not been well clarified. Therefore, human CD4+CD127−CD25+FOXP3+ Tregs were generated in MLR, immunoselected and their allospecific regulatory functions and associated mechanisms were then tested using modified 51Chromium release assays (Micro-CML), MLRs and CFSE-based multi-fluorochrome flow cytometry proliferation assays. It was observed that increased numbers of CD4+CD127−CD25+FOXP3+ cells were generated after a 7 day MLR. After immunoselection for CD4+CD127−CD25+ cells, they were designated as MLR-Tregs. When added as third component modulators, MLR-Tregs inhibited the alloreactive proliferation of autologous PBMC in a concentration dependent manner. The inhibition was quasi-antigen specific, in that the inhibition was non-specific at higher MLR-Treg modulator doses, but non-specificity disappeared with lower numbers at which specific inhibition was still significant. When tested in micro-CML assays CTL inhibition occurred with PBMC and purified CD8+ responders. However, antigen specificity of CTL inhibition was observed only with unpurified PBMC responders and not with purified CD8+ responders or even with CD8+ responders plus Non-T “APC”. However, allospecificity of CTL regulation was restored when autologous purified CD4+ T cells were added to the CD8+ responders. Proliferation of CD8+ cells was suppressed by MLR-Tregs in the presence or absence of IL-2. Inhibition by MLR-Tregs was mediated through down-regulation of intracellular perforin, granzyme B and membrane-bound CD25 molecules on the responding CD8+ cells. Therefore, it was concluded that human CD4+CD127−CD25+FOXP3+ MLR-Tregs down-regulate alloreactive cytotoxic responses. Regulatory allospecificity, however, requires the presence of cognate responding CD4+ T cells. CD8+ CTL regulatory mechanisms include impaired proliferation, reduced expression of cytolytic molecules and CD25+ activation epitopes

    Coverage goal selector for combining multiple criteria in search-based unit test generation

    Get PDF
    Unit testing is critical to the software development process, ensuring the correctness of basic programming units in a program (e.g., a method). Search-based software testing (SBST) is an automated approach to generating test cases. SBST generates test cases with genetic algorithms by specifying the coverage criterion (e.g., branch coverage). However, a good test suite must have different properties, which cannot be captured using an individual coverage criterion. Therefore, the state-of-the-art approach combines multiple criteria to generate test cases. Since combining multiple coverage criteria brings multiple objectives for optimization, it hurts the test suites’ coverage for certain criteria compared with using the single criterion. To cope with this problem, we propose a novel approach named smart selection . Based on the coverage correlations among criteria and the subsumption relationships among coverage goals, smart selection selects a subset of coverage goals to reduce the number of optimization objectives and avoid missing any properties of all criteria. We conduct experiments to evaluate smart selection on 400 Java classes with three state-of-the-art genetic algorithms under the 2-minute budget. On average, smart selection outperforms combining all goals on 65.1% of the classes having significant differences between the two approaches. Secondly, we conduct experiments to verify our assumptions about coverage criteria relationships. Furthermore, we assess the coverage performance of smart selection under varying budgets of 5, 8, and 10 minutes and explore its effect on bug detection, confirming the advantage of smart selection over combining all goals

    Prime-boost vaccination of mice and rhesus macaques with two novel adenovirus vectored COVID-19 vaccine candidates.

    Get PDF
    ABSTRACTCOVID-19 vaccines are being developed urgently worldwide. Here, we constructed two adenovirus vectored COVID-19 vaccine candidates of Sad23L-nCoV-S and Ad49L-nCoV-S carrying the full-length gene of SARS-CoV-2 spike protein. The immunogenicity of two vaccines was individually evaluated in mice. Specific immune responses were observed by priming in a dose-dependent manner, and stronger responses were obtained by boosting. Furthermore, five rhesus macaques were primed with 5 × 109 PFU Sad23L-nCoV-S, followed by boosting with 5 × 109 PFU Ad49L-nCoV-S at 4-week interval. Both mice and macaques well tolerated the vaccine inoculations without detectable clinical or pathologic changes. In macaques, prime-boost regimen induced high titers of 103.16 anti-S, 102.75 anti-RBD binding antibody and 102.38 pseudovirus neutralizing antibody (pNAb) at 2 months, while pNAb decreased gradually to 101.45 at 7 months post-priming. Robust T-cell response of IFN-γ (712.6 SFCs/106 cells), IL-2 (334 SFCs/106 cells) and intracellular IFN-γ in CD4+/CD8+ T cell (0.39%/0.55%) to S peptides were detected in vaccinated macaques. It was concluded that prime-boost immunization with Sad23L-nCoV-S and Ad49L-nCoV-S can safely elicit strong immunity in animals in preparation of clinical phase 1/2 trials
    corecore