133 research outputs found

    Compositions and Constituents of Freshwater Dissolved Organic Matter Isolated by Reverse Osmosis

    Get PDF
    Dissolved organic matter (DOM) from riverine and lacustrine water was isolated using a reverse osmosis (RO) system. Solid-state 13C nuclear magnetic resonance (13C NMR) was used to quantitatively evaluate the compositions and constituents of DOM, which are compared with previous investigations on marine DOM. Results indicated that concentration factor (CF) was a key metric controlling yield and sorption of DOM on the RO system. The sorption was likely non-selective, based on the 13C NMR and δ13C analyses. Carbohydrates and lipids accounted for 25.0–41.5% and 30.2–46.3% of the identifiable DOM, followed by proteins (18.2–19.8%) and lignin (7.17–12.8%). The freshwater DOM contained much higher alkyl and aromatic C but lower alkoxyl and carboxyl C than marine DOM. The structural difference was not completely accounted for by using structure of high molecular weight (HMW) DOM, suggesting a size change involved in transformations of DOM during the transport from rivers to oceans

    Role of Extractable and Residual Organic Matter Fractions on Sorption of Phenanthrene in Sediments

    Get PDF
    Two sediments were demineralized and sequentially fractionated into extracted fractions [free lipid (FL), bound lipid (BL) and lignin (LG)] and residual fractions [free lipid free (FLF), bound lipid free (BLF) and lignin free (LGF)]. The sorption isotherms of phenanthrene (Phen) were examined to evaluate the importance of various fractions on sorption. A lignin extraction procedure was for the first time applied to separate the lignin or degraded lignin fraction from sediment organic matter (SOM). The extracted LG was similar to model lignin in terms of elemental ratios and sorption behavior. FL and LG fractions were quite important, as their contents were much higher than reported values. Phen sorption for the extracted fractions was almost linear, whereas that for the residual fractions was nonlinear, especially for LGF with n 0.56-0.63. As the different organic fractions were removed sequentially, sorption energy distribution on the residual sediment organic matter (SOM) became more heterogeneous. In addition, increasing sorption capacity for the residual fractions, except for BLF with its high polarity, suggested that more sorption sites on the SOM matrix became accessible to Phen. The sorption capacity for LGF was comparable to that of condensed SOM. The residual fraction LGF generally controlled the overall sorption at low Phen concentration, but the extractable fraction FL surpassed the former fraction at high Phen concentration, demonstrating the importance of condensed SUM in the sorption of hydrophobic organic compounds (HOCs) in sediments. (c) 2012 Elsevier Ltd. All rights reserved

    Experimental study of the vortex-induced vibration of marine risers under middle flow

    Get PDF
    A considerable number of studies for vortex induced vibration (VIV) under uniform flow have been performed. However, investigation of VIV under middle flow is scarce. An experiment for VIV under middle flow was conducted in a deep-water offshore basin. Various measurements were obtained by the fiber Bragg grating strain sensors placed on the riser, and VIV under the effect of middle flow with was investigated. Results show that the riser vibrates at different order natural frequencies along the water depth in the CF and IL directions appearing as the multi-frequencies under middle flow. The variation vortex shedding frequencies along the riser under middle flow may generate different wake modes and vibration modals as the corresponding vortex shedding frequencies approach the riser natural frequencies. The dominant vibration frequency of the entire riser is consistent, and determined by high order natural frequency and the corresponding closing vortex shedding frequencies under the middle flow. Meanwhile, the vibration modal under middle flow appears multi-modals and other lower modal have effect on riser vibration. The VIV mechanism under middle flow possesses some aspects similar to those of uniform flow and several unique features

    ADoPT: LiDAR Spoofing Attack Detection Based on Point-Level Temporal Consistency

    Full text link
    Deep neural networks (DNNs) are increasingly integrated into LiDAR (Light Detection and Ranging)-based perception systems for autonomous vehicles (AVs), requiring robust performance under adversarial conditions. We aim to address the challenge of LiDAR spoofing attacks, where attackers inject fake objects into LiDAR data and fool AVs to misinterpret their environment and make erroneous decisions. However, current defense algorithms predominantly depend on perception outputs (i.e., bounding boxes) thus face limitations in detecting attackers given the bounding boxes are generated by imperfect perception models processing limited points, acquired based on the ego vehicle's viewpoint. To overcome these limitations, we propose a novel framework, named ADoPT (Anomaly Detection based on Point-level Temporal consistency), which quantitatively measures temporal consistency across consecutive frames and identifies abnormal objects based on the coherency of point clusters. In our evaluation using the nuScenes dataset, our algorithm effectively counters various LiDAR spoofing attacks, achieving a low ( 85%) true positive ratio (TPR), outperforming existing state-of-the-art defense methods, CARLO and 3D-TC2. Furthermore, our evaluation demonstrates the promising potential for accurate attack detection across various road environments.Comment: BMVC 2023 (17 pages, 13 figures, and 1 table

    Online dosimetric evaluation of larynx SBRT: A pilot study to assess the necessity of adaptive replanning

    Get PDF
    PURPOSE: We have initiated a multi-institutional phase I trial of 5-fraction stereotactic body radiotherapy (SBRT) for Stage III-IVa laryngeal cancer. We conducted this pilot dosimetric study to confirm potential utility of online adaptive replanning to preserve treatment quality. METHODS: We evaluated ten cases: five patients enrolled onto the current trial and five patients enrolled onto a separate phase I SBRT trial for early-stage glottic larynx cancer. Baseline SBRT treatment plans were generated per protocol. Daily cone-beam CT (CBCT) or diagnostic CT images were acquired prior to each treatment fraction. Simulation CT images and target volumes were deformably registered to daily volumetric images, the original SBRT plan was copied to the deformed images and contours, delivered dose distributions were re-calculated on the deformed CT images. All of these were performed on a commercial treatment planning system. In-house software was developed to propagate the delivered dose distribution back to reference CT images using the deformation information exported from the treatment planning system. Dosimetric differences were evaluated via dose-volume histograms. RESULTS: We could evaluate dose within 10 minutes in all cases. Prescribed coverage to gross tumor volume (GTV) and clinical target volume (CTV) was uniformly preserved; however, intended prescription dose coverage of planning treatment volume (PTV) was lost in 53% of daily treatments (mean: 93.9%, range: 83.9-97.9%). Maximum bystander point dose limits to arytenoids, parotids, and spinal cord remained respected in all cases, although variances in carotid artery doses were observed in a minority of cases. CONCLUSIONS: Although GTV and CTV SBRT dose coverage is preserved with in-room three-dimensional image guidance, PTV coverage can vary significantly from intended plans and dose to critical structures may exceed tolerances. Online adaptive treatment re-planning is potentially necessary and clinically applicable to fully preserve treatment quality. Confirmatory trial accrual and analysis remains ongoing

    Glycyrrhizin Attenuates Salmonella Typhimurium-Induced Tissue Injury, Inflammatory Response, and Intestinal Dysbiosis in C57BL/6 Mice

    Get PDF
    Salmonellae are one of the most important foodborne pathogens, which threaten the health of humans and animals severely. Glycyrrhizin (GL) has been proven to exhibit anti-inflammatory and tissue-protective properties. Here, we investigated the effects of GL on tissue injury, inflammatory response, and intestinal dysbiosis in Salmonella Typhimurium-infected mice. Results showed that GL or gentamicin (GM) significantly (P < 0.05) alleviated ST-induced splenomegaly indicated by the decreased spleen index, injury of liver and jejunum indicated by the decreased hepatocytic apoptosis, and the increased jejunal villous height. GL significantly (P < 0.05) increased secretion of inflammatory cytokines (IFN-γ, IL-12p70, IL-6, and IL-10) in spleen and IL-12p40 mRNA expression in liver. Meanwhile, GL or GM pre-infection treatments significantly (P < 0.05) decreased ST-induced pro-inflammatory cytokine (IFN-γ, TNF-α, and IL-6) expression in both spleen and liver and increased (P < 0.05) anti-inflammatory cytokine IL-10 secretion in spleen. Furthermore, GL or GM pre-infection treatment also regulates the diversities and compositions of intestinal microbiota and decreased the negative connection among the intestinal microbes in ST-infected mice. The above findings indicate that GL alleviates ST-induced splenomegaly, hepatocytic apoptosis, injury of jejunum and liver, inflammatory response of liver and spleen, and intestinal dysbacteriosis in mice
    • …
    corecore