373 research outputs found
Secrecy Outage and Diversity Analysis of Cognitive Radio Systems
In this paper, we investigate the physical-layer security of a multi-user
multi-eavesdropper cognitive radio system, which is composed of multiple
cognitive users (CUs) transmitting to a common cognitive base station (CBS),
while multiple eavesdroppers may collaborate with each other or perform
independently in intercepting the CUs-CBS transmissions, which are called the
coordinated and uncoordinated eavesdroppers, respectively. Considering multiple
CUs available, we propose the round-robin scheduling as well as the optimal and
suboptimal user scheduling schemes for improving the security of CUs-CBS
transmissions against eavesdropping attacks. Specifically, the optimal user
scheduling is designed by assuming that the channel state information (CSI) of
all links from CUs to CBS, to primary user (PU) and to eavesdroppers are
available. By contrast, the suboptimal user scheduling only requires the CSI of
CUs-CBS links without the PU's and eavesdroppers' CSI. We derive closed-form
expressions of the secrecy outage probability of these three scheduling schemes
in the presence of the coordinated and uncoordinated eavesdroppers. We also
carry out the secrecy diversity analysis and show that the round-robin
scheduling achieves the diversity order of only one, whereas the optimal and
suboptimal scheduling schemes obtain the full secrecy diversity, no matter
whether the eavesdroppers collaborate or not. In addition, numerical secrecy
outage results demonstrate that for both the coordinated and uncoordinated
eavesdroppers, the optimal user scheduling achieves the best security
performance and the round-robin scheduling performs the worst. Finally, upon
increasing the number of CUs, the secrecy outage probabilities of the optimal
and suboptimal user scheduling schemes both improve significantly.Comment: 16 pages, 5 figures, accepted to appear, IEEE Journal on Selected
Areas in Communications, 201
GABAergic Projection Neurons Route Selective Olfactory Inputs to Specific Higher-Order Neurons
SummaryWe characterize an inhibitory circuit motif in the Drosophila olfactory system, parallel inhibition, which differs from feedforward or feedback inhibition. Excitatory and GABAergic inhibitory projection neurons (ePNs and iPNs) each receive input from antennal lobe glomeruli and send parallel output to the lateral horn, a higher center implicated in regulating innate olfactory behavior. Ca2+ imaging of specific lateral horn neurons as an olfactory readout revealed that iPNs selectively suppressed food-related odor responses, but spared signal transmission from pheromone channels. Coapplying food odorant did not affect pheromone signal transmission, suggesting that the differential effects likely result from connection specificity of iPNs, rather than a generalized inhibitory tone. Ca2+ responses in the ePN axon terminals show no detectable suppression by iPNs, arguing against presynaptic inhibition as a primary mechanism. The parallel inhibition motif may provide specificity in inhibition to funnel specific olfactory information, such as food and pheromone, into distinct downstream circuits
- …