338 research outputs found

    An Information Minimization Based Contrastive Learning Model for Unsupervised Sentence Embeddings Learning

    Full text link
    Unsupervised sentence embeddings learning has been recently dominated by contrastive learning methods (e.g., SimCSE), which keep positive pairs similar and push negative pairs apart. The contrast operation aims to keep as much information as possible by maximizing the mutual information between positive instances, which leads to redundant information in sentence embedding. To address this problem, we present an information minimization based contrastive learning (InforMin-CL) model to retain the useful information and discard the redundant information by maximizing the mutual information and minimizing the information entropy between positive instances meanwhile for unsupervised sentence representation learning. Specifically, we find that information minimization can be achieved by simple contrast and reconstruction objectives. The reconstruction operation reconstitutes the positive instance via the other positive instance to minimize the information entropy between positive instances. We evaluate our model on fourteen downstream tasks, including both supervised and unsupervised (semantic textual similarity) tasks. Extensive experimental results show that our InforMin-CL obtains a state-of-the-art performance.Comment: 11 pages, 3 figures, published to COLING 202

    Triticeae crop genome biology: an endless frontier

    Get PDF
    Triticeae, the wheatgrass tribe, includes several major cereal crops and their wild relatives. Major crops within the Triticeae are wheat, barley, rye, and oat, which are important for human consumption, animal feed, and rangeland protection. Species within this tribe are known for their large genomes and complex genetic histories. Powered by recent advances in sequencing technology, researchers worldwide have made progress in elucidating the genomes of Triticeae crops. In addition to assemblies of high-quality reference genomes, pan-genome studies have just started to capture the genomic diversities of these species, shedding light on our understanding of the genetic basis of domestication and environmental adaptation of Triticeae crops. In this review, we focus on recent signs of progress in genome sequencing, pan-genome analyses, and resequencing analysis of Triticeae crops. We also propose future research avenues in Triticeae crop genomes, including identifying genome structure variations, the association of genomic regions with desired traits, mining functions of the non-coding area, introgression of high-quality genes from wild Triticeae resources, genome editing, and integration of genomic resources

    Research on singular spectrum decomposition and its application to rotor failure detection

    Get PDF
    As an important part of rotating machinery, a healthy rotor is critical to ensuring optimal working conditions of the entire system. Considering that the vibration signal of rotor consists of different frequency components when the failure arises, a novel rotor failure detection method based on singular spectrum decomposition (SSD) is presented. The original vibration signal is adaptively decomposed into a number of singular spectrum components (SSCs) by the SSD method. Then, energy separation algorithm (ESA) is adopted to demodulate each singular spectrum component. Finally, the SSD-ESA time-frequency spectrum can be obtained and the fault features contained in the SSD-ESA time-frequency spectrum can be identified to determine the fault types. The effectiveness of SSD for harmonic separation was assessed through tones separation analyses, the results show that SSD is able to separate more harmonic pairs of different amplitude ratios than empirical mode decomposition (EMD). Furthermore, three simulations of multi-component signals were designed to investigate the use of SSD for signal decomposition. The SSD method was then applied to detect signatures caused by rotor oil film whirl in experimental signals and compared to both EMD and ensemble EMD (EEMD). The simulated analysis results reflect that SSD shows superiority to EMD and EEMD in inhibiting mode mixing and extracting the time-varying frequency components. The experimental analysis results demonstrate that the SSD based rotor failure detection method is an alternative method under both constant and variable speed conditions

    Time-Frequency Analysis Based on Improved Variational Mode Decomposition and Teager Energy Operator for Rotor System Fault Diagnosis

    Get PDF
    A time-frequency analysis method based on improved variational mode decomposition and Teager energy operator (IVMD-TEO) is proposed for fault diagnosis of turbine rotor. Variational mode decomposition (VMD) can decompose a multicomponent signal into a number of band-limited monocomponent signals and can effectively avoid model mixing. To determine the number of monocomponents adaptively, VMD is improved using the correlation coefficient criterion. Firstly, IVMD algorithm is used to decompose a multicomponent signal into a number of monocompositions adaptively. Second, all the monocomponent signals’ instantaneous amplitude and instantaneous frequency are demodulated via TEO, respectively, because TEO has fast and high precision demodulation advantages to monocomponent signal. Finally, the time-frequency representation of original signal is exhibited by superposing the time-frequency representations of all the monocomponents. The analysis results of simulation signal and experimental turbine rotor in rising speed condition demonstrate that the proposed method has perfect multicomponent signal decomposition capacity and good time-frequency expression. It is a promising time-frequency analysis method for rotor fault diagnosis

    Performance Entitlement by Using Novel High Strength Electrical Steels and Copper Alloys for High-Speed Laminated Rotor Induction Machines

    Get PDF
    The laminated rotor Induction Machine (IM), with its simple construction and manufacturing, robustness, ease of control and comparatively lower cost remains by far the most utilized electromechanical energy converter. At very high speeds, traditionally its use is considered to be limited to the previously established operational limits of 2.5 × 105 rpm√kW, beyond which the surface Permanent Magnet (PM) Machine and the solid rotor Induction Machine become the machines available for consideration. The aforesaid limits are derived from the use of classic materials. This paper reviews the recent developments in electrical steels and copper alloys and translates these into the resulting performance entitlement and operational limits through a case study involving a marine application, for which an existing rare-earth PM machine is in use. It is concluded that with novel materials, laminated rotor induction machines can be operated up to 6 × 105 rpm√kW, thus opening the use of the rare-earth free Induction Machine for a wider application range previously limited to PM machines

    Sputum microbe community alterations induced by long-term inhaled corticosteroid use are associated with airway function in chronic obstructive pulmonary disease patients based on metagenomic next-generation sequencing (mNGS)

    Get PDF
    Objective: Inhaled corticosteroids (ICS) are widely used in chronic obstructive pulmonary disease (COPD) patients as a treatment option. However, ICS may also increase the risk of pneumonia and alter the composition of airway microbiota. In clinical application, the overuse of ICS exists pervasively and may potentially lead to adverse effects. Whether the long-term use of ICS confers enough benefit to COPD patients to justify its use so far remains unknown. Therefore, this study employed a single-center retrospective cohort study to compare alterations in airway function and the sputum microbial community structure between COPD patients who had undergone either long-term or short-term treatment with ICS.Methods: Sixty stable COPD patients who had used ICS were recruited and classified into the long-term use group (more than 3 months) and short-term use group (less than 3 months). The demographic features and clinical information of the subjects were investigated and their sputum samples were collected and subjected to metagenomic next-generation sequencing (mNGS).Results: The study found that compared with short-term ICS use, long-term ICS use did not further improve the clinical airway function, decrease the number of acute exacerbations, or decrease hospital readmission. In terms of sputum microbiota, the long-term use of ICS significantly altered the beta diversity of the microbial community structure (p < 0.05) and the top three phyla differed between the two groups. At the genus level, long-term ICS induced higher relative abundances of Abiotrophia, Schaalia, Granulicatella, Mogibacterium, Sphingobium, and Paraeggerthella compared to short-term ICS use. Additionally, alpha diversity was positively associated with clinical airway indicators (pre-bronchodilatory FEV1 and pre-bronchodilatory FVC) in the long-term ICS group. The relative abundances of Rothia, Granulicatella, Schaalia, and Mogibacterium genera had positive correlations with the eosinophil % (of all white blood cells). Conclusion: This study reveals the effect of long-term and short-term ICS use on sputum microbiota among COPD patients and provides a reference for the appropriate application of clinical ICS treatment in COPD patients

    Global systematic review with meta-analysis shows that warming effects on terrestrial plant biomass allocation are influenced by precipitation and mycorrhizal association

    Get PDF
    Biomass allocation in plants is fundamental for understanding and predicting terrestrial carbon storage. Yet, our knowledge regarding warming effects on root: shoot ratio (R/S) remains limited. Here, we present a meta-analysis encompassing more than 300 studies and including angiosperms and gymnosperms as well as different biomes (cropland, desert, forest, grassland, tundra, and wetland). The meta-analysis shows that average warming of 2.50 °C (median = 2 °C) significantly increases biomass allocation to roots with a mean increase of 8.1% in R/S. Two factors associate significantly with this response to warming: mean annual precipitation and the type of mycorrhizal fungi associated with plants. Warming-induced allocation to roots is greater in drier habitats when compared to shoots (+15.1% in R/S), while lower in wetter habitats (+4.9% in R/S). This R/S pattern is more frequent in plants associated with arbuscular mycorrhizal fungi, compared to ectomycorrhizal fungi. These results show that precipitation variability and mycorrhizal association can affect terrestrial carbon dynamics by influencing biomass allocation strategies in a warmer world, suggesting that climate change could influence belowground C sequestration
    • …
    corecore