32 research outputs found
Elevated Monocyte to High-density Lipoprotein Ratio Is a Risk Factor for New-onset Atrial Fibrillation after Off-pump Coronary Revascularization
Atrial fibrillation (AF) is a common complication of coronary revascularization. Currently, the mechanisms of postoperative AF are unclear. This study was aimed at investigating the risk factors for new-onset AF (NOAF) after coronary revascularization and exploring the early warning effects of clinical inflammatory markers. A retrospective analysis was conducted on 293 patients with unstable angina pectoris who underwent coronary artery revascularization in Beijing Chao-Yang Hospital, Capital Medical University, between April 2018 and June 2021, including 224 patients who underwent coronary artery bypass grafting and 69 patients who underwent one-step hybrid coronary revascularization. Baseline data, clinical data, blood indicators and AF episodes within 7 days after the surgery were collected. Participants were divided into two groups according to whether AF occurred, and the data were analyzed between groups. In addition, multivariate logistic regression was used to explore the independent risk factors for developing AF post coronary revascularization. Aging, a larger left atrial inferior-superior diameter, use of an intra-aortic balloon pump, a greater blood volume transfused during perioperative period and a higher monocyte to high-density lipoprotein ratios on postoperative day 1 were independent risk factors for NOAF after coronary artery surgery
Assembly strategies for polyethylene-degrading microbial consortia based on the combination of omics tools and the “Plastisphere”
Numerous microorganisms and other invertebrates that are able to degrade polyethylene (PE) have been reported. However, studies on PE biodegradation are still limited due to its extreme stability and the lack of explicit insights into the mechanisms and efficient enzymes involved in its metabolism by microorganisms. In this review, current studies of PE biodegradation, including the fundamental stages, important microorganisms and enzymes, and functional microbial consortia, were examined. Considering the bottlenecks in the construction of PE-degrading consortia, a combination of top-down and bottom-up approaches is proposed to identify the mechanisms and metabolites of PE degradation, related enzymes, and efficient synthetic microbial consortia. In addition, the exploration of the plastisphere based on omics tools is proposed as a future principal research direction for the construction of synthetic microbial consortia for PE degradation. Combining chemical and biological upcycling processes for PE waste could be widely applied in various fields to promote a sustainable environment
Diagnostic Role of Prostate-Specific Membrane Antigen in Adrenocortical Carcinoma
Objective: To investigate the role of PSMA in the differential diagnosis of adrenocortical carcinoma samples (ACCs) and adrenocortical adenoma samples (ACAs), to validate the prognostic role of PSMA in patients with ACCs, and to explore the possibility that this marker can differentiate localized ACCs from adrenal metastases from other sites.Methods: PSMA protein expression in tissue samples from 50 ACCs, 90 ACAs (including 20 from patients who presented with Cushing's syndrome, 20 aldosterone-producing adenomas and 50 non-functional tumors) and 10 tissues that were metastases from other primary sites was assessed by immunohistochemistry. The clinical and pathological characteristics were compared, the intensity and density were analyzed, and the prognostic role was evaluated.Results: The analysis of clinical and pathological features revealed that the size of ACCs was greater than that of benign tissues and the ACC patients were older than the ACA patients (p < 0.01). The percentage of PSMA-positive vessels, the mean intensity and the degree of staining density were found to be significantly lower in ACAs than in ACCs (p < 0.01). In these 140 samples, 60% of the ACCs were grouped in the positive category. The samples were negative for metastases that were from other primary sites. The ENSAT stage and Ki-67 were correlated with PSMA expression. The survival distribution revealed that high PSMA expression did not show any prognostic relevance in the current ACCs series. Those samples with a score of > 3.5 were 75 times more likely to be malignant (OR = 75). We established a cut-off score of 3.5 (p < 0.05), which had 46% sensitivity and 99% specificity. Paralleling PSMA and Ki-67 maximized the area under the curve, with 72% sensitivity and 100% specificity.Conclusions: Our results strongly confirm that PSMA is helpful for distinguishing benign from malignant tumors and that its high expression levels correlate with a high ENSAT stage and high proliferation. The combination of PSMA and Ki-67 can be particularly useful. Furthermore, PSMA might be a useful tool for the identification of localized adrenal carcinoma and metastatic carcinoma
Impact of Different Reanalysis Data and Parameterization Schemes on WRF Dynamic Downscaling in the Ili Region
Different reanalysis data and physical parameterization schemes for the Weather Research and Forecasting (WRF) model are considered in this paper to evaluate their performance in meteorological simulations in the Ili Region. A 72-hour experiment was performed with two domains at the resolution of 27 km with one-way nesting of 9 km. (1) Final Analysis (FNL) and Global Forecast System (GFS) reanalysis data (hereafter, WRF-FNL experiment and WRF-GFS experiment, respectively) were used in the WRF model. For the simulation of accumulated precipitation, both the WRF-FNL (mean bias of 0.79 mm) and WRF-GFS (mean bias of 0.31 mm) simulations can display the main features of the general temporal pattern and geographical distribution of the observed precipitation. For the simulation of the 2-m temperature, the simulation of the WRF-GFS experiment (mean warm bias of 1.81 °C and correlation coefficient of 0.83) was generally better than that of the WRF-FNL experiment (mean cold bias of 1.79 °C and correlation coefficient of 0.27). (2) Thirty-six physical combination schemes were proposed, each with a unique set of physical parameters. Member 33 (with the smallest mean-metric of 0.53) performed best for the precipitation simulation, and member 29 (with the smallest mean-metric of 0.64) performed best for the 2-m temperature simulation. However, member 29 and 33 cannot be distinguished from the other members according to their parameterizations. For this domain, ensemble members that contain the Mellor⁻Yamada⁻Janjic (MYJ) boundary layer (PBL) scheme and the Grell⁻Devenyi (GD) cumulus (CU) scheme are recommended for the precipitation simulation. The Geophysical Fluid Dynamics Laboratory (GFDL) radiation (RA) scheme and the MYJ PBL scheme are recommended for the 2-m temperature simulation
Beacon-Based Hybrid Routing Protocol for Large-Scale Unmanned Vehicle Ad Hoc Network
In this paper, we designed a beacon-based hybrid routing protocol to adapt to the new forms of intelligent warfare, accelerate the application of unmanned vehicles in the military field, and solve the problems such as high maintenance cost, path failure, and repeated routing pathfinding in large-scale unmanned vehicle network communications for new battlefields. This protocol used the periodic broadcast pulses initiated by the beacon nodes to provide synchronization and routing to the network and established a spanning tree through which the nodes communicated with each other. An NS3 platform was used to build a dynamic simulation environment of service data to evaluate the network performance. The results showed that when it was used in a range of 5 ~ 35 communication links, the beacon-based routing protocol’s PDR was approximately 10% higher than that of AODV routing protocol. At 5 ~ 50 communication links, the result was approximately 20% higher than the DSDV routing protocol. The routing load was not related to the number of nodes and communication link data and the protocol had better performance than traditional AODV and DSDV routing protocol, which reduced the cost of the routing protocol and effectively improved the stability and reliability of the network. The protocol we designed is more suitable for the scenarios of large-scale unmanned vehicle network communication in the future AI battlefield
Degradation of Chloramphenicol Using UV-LED Based Advanced Oxidation Processes: Kinetics, Mechanisms, and Enhanced Formation of Disinfection By-Products
As an emerging light source, ultraviolet light emitting diodes (UV-LEDs) are adopted to overcome the shortcomings of the conventional mercury lamp, such as mercury pollution. The degradation of chloramphenicol (CAP) using three UV-LED-based advanced oxidation processes (AOPs)—UV-LED/persulfate (UV-LED/PS), UV-LED/peroxymonosulfate (UV-LED/PMS) and UV-LED/chlorine—was investigated. Results indicate that CAP can be more effectively degraded by the hybrid processes when compared to UV irradiation and oxidants alone. Degradation of CAP using the three UV-LED-based AOPs followed pseudo-first-order kinetics. The degradation rate constants (kobs) for UV-LED/PS, UV-LED/PMS, and UV-LED/chlorine were 0.0522, 0.0437 and 0.0523 min−1, and the CAP removal rates 99%, 98.1% and 96.3%, respectively. The degradation rate constant (kobs) increased with increasing oxidant dosage for UV-LED/chlorine, whereas overdosing reduced CAP degradation using UV-LED/PS and UV-LED/PMS. Ultraviolet wavelength influenced degradation efficiency of the UV-LED based AOPs with maximum CAP degradation observed at a wavelength of 280 nm. The application of UV-LED enhanced the formation DBPs during subsequent chlorination. uUV-LED/PMS produced more disinfection by-products than UV-LED/PS. Compared to UV-LED, UV-LED/PS reduced the formation of dichloroacetonitrile and trichloronitromethane during chlorination owing to its capacity to degrade the nitro group in CAP. The intermediates dichloroacetamide, 4-nitrobenzoic acid, 4-nitrophenol were produced during the degradation of CAP using each of UV-LED, UV-LED/PS and UV-LED/chlorine. The present study provides further evidence supporting the application of UV-LED in AOPs
Table_1_From morphological to ecological adaptation of the cornea in Oxudercinae fishes.xlsx
The outer cornea plays an important role in animal adaptation and survival in different environments. however, research on the morphological and ecological adaptation of corneal structure in amphibious fishes is limited. In this study, scanning electron microscopy (SEM) was used to evaluate the microstructure and adaptation of corneal epithelial cells in Oxudercinae. The results showed that the corneas of Oxudercinae species possess microridges, microvilli, and microplicae, as well as different numbers of epithelial cells. The morphological structure of corneal epithelial cells, observed by collecting samples and comparing the results with previous results, also showed different adaptive characteristics for moving between water and land. Further analyses revealed significant differences in epithelial cell density (F4, 22 = 5.436, P=0.003) and microridge width (F4, 22 = 8.392, P<0.001) among species with different levels of aquatic dependence. In addition, significant negative correlations of epithelial cell density with microridge width and separation width were confirmed (P<0.05). Interestingly, significant negative correlations of habitat type with cell density and microridges were uncovered, as well as a positive correlation between habitat type and separation width (P<0.05). The results indicated that the corneal structure of Oxudercinae species has characteristics of adaptation to an amphibious lifestyle.</p
High-yield and high-performance porous biochar produced from pyrolysis of peanut shell with low-dose ammonium polyphosphate for chloramphenicol adsorption
Adsorptive removal by porous carbon materials has been considered an attractive technique to treat wastewater polluted by antibiotics. To produce porous biochar with high-yield and high-performance for chloramphenicol adsorption, this study prepared biochar from peanut shells using ammonium polyphosphate via pyrolysis. The combined effects of the main process parameters on biochar production were studied to determine the optimum operating conditions by response surface methodology based on Box-Behnken design. Low-dose ammonium polyphosphate has a significant positive effect on the yield, surface functional groups, pore volume, and surface area of biochar. This is caused by the richness of nitrogen and phosphorus in ammonium polyphosphate and its flame retardant property. The high-yield biochar with a surface area of 979 ± 25 m/g was obtained at a mass ratio of ammonium polyphosphate/peanut shell of 0.55, at 650 °C with a retention time of 60 min. The as-prepared biochar exhibited excellent adsorption performance with a monolayer chloramphenicol adsorption capacity of 423.7 mg/g. This was due to the high surface area, micropores formed by nano-sized particles, and richness of N- and P-containing functional groups. The characterization before and after chloramphenicol adsorption indicated micro-pore-filling, Van der Waals force, π-π interaction, and hydrogen-bonding interaction are the main adsorption mechanisms of chloramphenicol adsorption on as-prepared biochar. This study offered new insights on the preparation of biochar from waste biomass for application in wastewater treatment