14 research outputs found

    Degradation of Group V Secretory Phospholipase A2 in Lung Endothelium is Mediated by Autophagy

    Get PDF
    Group V secretory phospholipase A2 (gVPLA2) is a potent inflammatory mediator in mammalian tissues that hydrolyzes phospholipids and initiates eicosanoid biosynthesis. Previous work has demonstrated that multiple inflammatory stimuli induce its expression and secretion in several cell types, including the lung endothelium. However, little is known about the mechanism(s) by which gVPLA2 inflammatory signaling is subsequently downregulated. Therefore, in this study we characterized potential clearance mechanisms for gVPLA2 in lung endothelial cells (EC). We observed that exogenous gVPLA2 is taken up rapidly by nutrient-starved human pulmonary artery EC (HPAEC) in vitro, and its cellular expression subsequently is reduced over several hours. In parallel experiments performed in pulmonary vascular EC isolated from mice genetically deficient in gVPLA2, the degradation of exogenously applied gVPLA2 occurs in a qualitatively similar fashion. This degradation is significantly attenuated in EC treated with ammonium chloride or chloroquine, which are lysosomal inhibitors that block autophagic flux. In contrast, the proteasomal inhibitor MG132 fails to prevent the clearance of gVPLA2. Both immunofluorescence microscopy and proximity ligation assay demonstrate the co-localization of LC3 and gVPLA2 during this process, indicating the association of gVPLA2 with autophagosomes. Nutrient starvation, a known inducer of autophagy, is sufficient to stimulate gVPLA2 degradation. These results suggest that a lysosome-mediated autophagy pathway contributes to gVPLA2 clearance from lung EC. These novel observations advance our understanding of the mechanism by which this key inflammatory enzyme is downregulated in the lung vasculature

    Haloperidol Attenuates Lung Endothelial Cell Permeability In Vitro and In Vivo

    Full text link
    We previously reported that claudin-5, a tight junctional protein, mediates lung vascular permeability in a murine model of acute lung injury (ALI) induced by lipopolysaccharide (LPS). Recently, it has been reported that haloperidol, an antipsychotic medication, dose-dependently increases expression of claudin-5 in vitro and in vivo, in brain endothelium. Notably, claudin-5 is highly expressed in both brain and lung tissues. However, the effects of haloperidol on EC barrier function are unknown. We hypothesized that haloperidol increases lung EC claudin-5 expression and attenuates agonist-induced lung EC barrier disruption. Human pulmonary artery ECs were pretreated with haloperidol at variable concentrations (0.1–10 μM) for 24 h. Cell lysates were subjected to Western blotting for claudin-5, in addition to occludin and zona occludens-1 (ZO-1), two other tight junctional proteins. To assess effects on barrier function, EC monolayers were pretreated for 24 h with haloperidol (10 µM) or vehicle prior to treatment with thrombin (1 U/mL), with measurements of transendothelial electrical resistance (TER) recorded as a real-time assessment of barrier integrity. In separate experiments, EC monolayers grown in Transwell inserts were pretreated with haloperidol (10 µM) prior to stimulation with thrombin (1 U/mL, 1 h) and measurement of FITC-dextran flux. Haloperidol significantly increased claudin-5, occludin, and ZO-1 expression levels. Measurements of TER and FITC-dextran Transwell flux confirmed a significant attenuation of thrombin-induced barrier disruption associated with haloperidol treatment. Finally, mice pretreated with haloperidol (4 mg/kg, IP) prior to the intratracheal administration of LPS (1.25 mg/kg, 16 h) had increased lung claudin-5 expression with decreased lung injury as assessed by bronchoalveolar lavage (BAL) fluid protein content, total cell counts, and inflammatory cytokines, in addition to lung histology. Our data confirm that haloperidol results in increased claudin-5 expression levels and demonstrates lung vascular-protective effects both in vitro and in vivo in a murine ALI model. These findings suggest that haloperidol may represent a novel therapy for the prevention or treatment of ALI and warrants further investigation in this context

    Anthrax lethal factor activates K+ channels to induce IL-1β secretion in macrophages

    Full text link
    Anthrax lethal toxin (LeTx) is a virulence factor of Bacilillus anthracis that is a bivalent toxin, containing lethal factor (LF) and protective Ag proteins, which causes cytotoxicity and altered macrophage function. LeTx exposure results in early K(+) efflux from macrophages associated with caspase-1 activation and increased IL-1β release. The mechanism of this toxin-induced K(+) efflux is unknown. The goals of the current study were to determine whether LeTx-induced K(+) efflux from macrophages is mediated by toxin effects on specific K(+) channels and whether altered K(+)-channel activity is involved in LeTx-induced IL-1β release. Exposure of macrophages to LeTx induced a significant increase in the activities of two types of K(+) channels that have been identified in mouse macrophages: Ba(2+)-sensitive inwardly rectifying K(+) (Kir) channels and 4-aminopyridine-sensitive outwardly rectifying voltage-gated K(+) (Kv) channels. LeTx enhancement of both Kir and Kv required the proteolytic activity of LF, because exposure of macrophages to a mutant LF-protein (LF(E687C)) combined with protective Ag protein had no effect on the currents. Furthermore, blocking Kir and Kv channels significantly decreased LeTx-induced release of IL-1β. In addition, retroviral transduction of macrophages with wild-type Kir enhanced LeTx-induced release of IL-1β, whereas transduction of dominant-negative Kir blocked LeTx-induced release of IL-1β. Activation of caspase-1 was not required for LeTx-induced activation of either of the K(+) channels. These data indicate that a major mechanism through which LeTx stimulates macrophages to release IL-1β involves an LF-protease effect that enhances Kir and Kv channel function during toxin stimulation

    Non-Muscle MLCK Contributes to Endothelial Cell Hyper-Proliferation through the ERK Pathway as a Mechanism for Vascular Remodeling in Pulmonary Hypertension

    Full text link
    Pulmonary arterial hypertension (PAH) is characterized by endothelial dysfunction, uncontrolled proliferation and migration of pulmonary arterial endothelial cells leading to increased pulmonary vascular resistance resulting in great morbidity and poor survival. Bone morphogenetic protein receptor II (BMPR2) plays an important role in the pathogenesis of PAH as the most common genetic mutation. Non-muscle myosin light chain kinase (nmMLCK) is an essential component of the cellular cytoskeleton and recent studies have shown that increased nmMLCK activity regulates biological processes in various pulmonary diseases such as asthma and acute lung injury. In this study, we aimed to discover the role of nmMLCK in the proliferation and migration of pulmonary arterial endothelial cells (HPAECs) in the pathogenesis of PAH. We used two cellular models relevant to the pathobiology of PAH including BMPR2 silenced and vascular endothelial growth factor (VEGF) stimulated HPAECs. Both models demonstrated an increase in nmMLCK activity along with a robust increase in cellular proliferation, inflammation, and cellular migration. The upregulated nmMLCK activity was also associated with increased ERK expression pointing towards a potential integral cytoplasmic interaction. Mechanistically, we confirmed that when nmMLCK is inhibited by MLCK selective inhibitor (ML-7), proliferation and migration are attenuated. In conclusion, our results demonstrate that nmMLCK upregulation in association with increased ERK expression may contribute to the pathogenesis of PAHby stimulating cellular proliferation and migration

    UCHL1, a deubiquitinating enzyme, regulates lung endothelial cell permeability in vitro and in vivo

    Full text link
    Increasing evidence suggests an important role for deubiquitinating enzymes (DUBs) in modulating a variety of biological functions and diseases. We previously identified the upregulation of the DUB ubiquitin carboxyl terminal hydrolase 1 (UCHL1) in murine ventilator-induced lung injury (VILI). However, the role of UCHL1 in modulating vascular permeability, a cardinal feature of acute lung injury (ALI) in general, remains unclear. We investigated the role of UCHL1 in pulmonary endothelial cell (EC) barrier function in vitro and in vivo and examined the effects of UCHL1 on VE-cadherin and claudin-5 regulation, important adherens and tight junctional components, respectively. Measurements of transendothelial electrical resistance confirmed decreased barrier enhancement induced by hepatocyte growth factor (HGF) and increased thrombin-induced permeability in both UCHL1-silenced ECs and in ECs pretreated with LDN-57444 (LDN), a pharmacological UCHL1 inhibitor. In addition, UCHL1 knockdown (siRNA) was associated with decreased expression of VE-cadherin and claudin-5, whereas silencing of the transcription factor FoxO1 restored claudin-5 levels. Finally, UCHL1 inhibition in vivo via LDN was associated with increased VILI in a murine model. These findings support a prominent functional role of UCHL1 in regulating lung vascular permeability via alterations in adherens and tight junctions and implicate UCHL1 as an important mediator of ALI.12 month embargo; published online 31 March 2021This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
    corecore