16 research outputs found

    Targeted cell delivery of mesenchymal stem cell therapy for cardiovascular disease applications: a review of preclinical advancements

    Get PDF
    Cardiovascular diseases (CVD) continue to be the leading cause of morbidity and mortality globally and claim the lives of over 17 million people annually. Current management of CVD includes risk factor modification and preventative strategies including dietary and lifestyle changes, smoking cessation, medical management of hypertension and cholesterol lipid levels, and even surgical revascularization procedures if needed. Although these strategies have shown therapeutic efficacy in reducing major adverse cardiovascular events such as heart attack, stroke, symptoms of chronic limb-threatening ischemia (CLTI), and major limb amputation significant compliance by patients and caregivers is required and off-target effects from systemic medications can still result in organ dysfunction. Stem cell therapy holds major potential for CVD applications but is limited by the low quantities of cells that are able to traffic to and engraft at diseased tissue sites. New preclinical investigations have been undertaken to modify mesenchymal stem cells (MSCs) to achieve targeted cell delivery after systemic administration. Although previous reviews have focused broadly on the modification of MSCs for numerous local or intracoronary administration strategies, here we review recent preclinical advances related to overcoming challenges imposed by the high velocity and dynamic flow of the circulatory system to specifically deliver MSCs to ischemic cardiac and peripheral tissue sites. Many of these technologies can also be applied for the targeted delivery of other types of therapeutic cells for treating various diseases

    E-Selectin/AAV2/2 Gene Therapy Alters Angiogenesis and Inflammatory Gene Profiles in Mouse Gangrene Model

    No full text
    For patients with chronic limb-threatening ischemia and limited revascularization options, alternate means for therapeutic angiogenesis and limb salvage are needed. E-selectin is a cell adhesion molecule that is critical for inflammation and neovascularization in areas of wound healing and ischemia. Here, we tested the efficacy of modifying ischemic limb tissue by intramuscular administration of E-selectin/AAV2/2 (adeno-associated virus serotype 2/2) to modulate angiogenic and inflammatory responses in a murine hindlimb gangrene model. Limb appearance, reperfusion, and functional recovery were assessed for 3 weeks after induction of ischemia. Mice receiving E-selectin/AAV2/2 gene therapy had reduced gangrene severity, increased limb and footpad perfusion, enhanced recruitment of endothelial progenitor cells, and improved performance on treadmill testing compared to control group. Histologically, E-selectin/AAV2/2 gene therapy was associated with increased vascularity and preserved myofiber integrity. E-selectin/AAV2/2 gene therapy also upregulated a panel of pro-angiogenic genes yet downregulated another group of genes associated with the inflammatory response. This novel gene therapy did not induce adverse effects on coagulability, or hematologic, hepatic, and renal function. Our findings highlight the potential of E-selectin/AAV2/2 gene therapy for improving limb perfusion and function in patients with chronic limb-threatening ischemia
    corecore