67 research outputs found

    High resolution electrochemical measurements for corrosion

    Get PDF
    Scanning electrochemical cell microscopy (SECCM) is a recently developed technique that has the ability to perform multiple reproducible electrochemical measurements with very high spatial resolution at surfaces. Despite its success in the study of nanoparticle electrocatalysis and carbon nanomaterials, SECCM has yet to be applied to the field of corrosion science. This thesis presents the first efforts to utilise SECCM as a tool to study corrosion related phenomena. In this work, comparisons are made between SECCM and similar techniques that are currently used in corrosion science to identify where SECCM can be most effective and how it can improve on these existing methods. The corrosion related behaviour associated with the microstructural features of metals and alloys (e.g. grain orientation, grain boundaries, and inclusions) is a popular topic amongst researchers adopting high resolution electrochemical methods. Considering the recent success of applying SECCM to resolve the relationship between electrochemical behaviour and surface structure, this proved to be the ideal topic to introduce SECCM into corrosion science. The relationship between the crystal orientation of grains on polycrystalline metals and the rates of various corrosion related processes, including: anodic dissolution, cathodic hydrogen evolution, passive behaviour, and hydrogen absorption, in neutral and acidic media is revealed successfully in this work. The electrochemical behaviour of individual nanoscale inclusions and grain boundaries is also investigated. These results were collected using SECCM in combination with various complementary and correlative surface characterisation techniques (e.g. electron backscatter diffraction, and energy dispersive spectroscopy) applied to the same electrode region as the SECCM measurements, and computational methods (e.g. density functional theory). In summary, this thesis has shown that SECCM has the ability to contribute significantly in the field of corrosion science

    Correlative electrochemical microscopy of Li-Ion (De)intercalation at a series of individual LiMn2 O4 particles

    Get PDF
    The redox activity (Li‐ion intercalation/deintercalation) of a series of individual LiMn2O4 particles of known geometry and (nano)structure, within an array, is determined using a correlative electrochemical microscopy strategy. Cyclic voltammetry (current–voltage curve, I–E) and galvanostatic charge/discharge (voltage–time curve, E–t) are applied at the single particle level, using scanning electrochemical cell microscopy (SECCM), together with co‐location scanning electron microscopy that enables the corresponding particle size, morphology, crystallinity, and other factors to be visualized. This study identifies a wide spectrum of activity of nominally similar particles and highlights how subtle changes in particle form can greatly impact electrochemical properties. SECCM is well‐suited for assessing single particles and constitutes a combinatorial method that will enable the rational design and optimization of battery electrode materials

    Scanning electrochemical cell microscopy : a versatile method for highly localised corrosion related measurements on metal surfaces

    Get PDF
    The development of tools that can probe corrosion related phenomena at the (sub)microscale is recognized to be increasingly important in order to understand the surface structural factors (grain orientation, inclusions etc.) that control the (electro)chemical stability (corrosion susceptibility, pitting, passivity etc.) of metal surfaces. Herein we consider the application of scanning electrochemical cell microscopy (SECCM), a relatively new member of the electrochemical droplet cell (EDC) family, for corrosion research and demonstrate the power of this technique for resolving structure and activity at the (sub)microscale. Hundreds of spatially-resolved (2 μm droplet size) potentiodynamic polarization experiments have been carried out on the several hours timescale and correlated to complementary structural information from electron backscatter diffraction (EBSD) and energy dispersive x-ray spectroscopy (EDS) in order to determine the effect of grain orientation and inclusions on electrochemical processes at low carbon steel in neutral solution (10 mM KNO3). Through this approach, it has been shown unequivocally that for the low index planes, anodic currents in the passive region (an indicator of corrosion susceptibility) are greatest on (101) planes compared to (100) and (111) planes. Furthermore, individual sub-micron MnS inclusions have been probed and shown to undergo active dissolution followed by rapid repassivation. This study demonstrates the high versatility of SECCM and the considerable potential of this technique for addressing structure-activity problems in corrosion and electromaterials science

    Nanoscale electrochemical visualization of grain-dependent anodic iron dissolution from low carbon steel

    Get PDF
    The properties of steels and other alloys are often tailored to suit specific applications through the manipulation of microstructure (e.g., grain structure). Such microscopic heterogeneities are also known to modulate corrosion susceptibility/resistance, but the exact dependency remains unclear, largely due to the challenge of probing and correlating local electrochemistry and structure at complex (alloy) surfaces. Herein, high-resolution scanning electrochemical cell microscopy (SECCM) is employed to perform spatially-resolved potentiodynamic polarisation measurements, which, when correlated to co-located structural information from electron backscatter diffraction (EBSD), analytical scanning electron microscopy (SEM) and scanning transmission electron microscopy (STEM), reveal the relationship between anodic metal (iron) dissolution and the crystallographic orientation of low carbon steel in aqueous sulfuric acid (pH 2.3). Considering hundreds of individual measurements made on each of the low-index planes of body-centred cubic (bcc) low carbon steel, the rate of iron dissolution, and thus overall corrosion susceptibility, increases in the order (101) < (111) < (100). These results are rationalized by complementary density functional theory (DFT) calculations, where the experimental rate of iron dissolution correlates with the energy required to remove (and ionise) one iron atom at the surface of a lattice, calculated for each low index orientation. Overall, this study further demonstrates how nanometre-resolved electrochemical techniques such as SECCM can be effectively utilised to vastly improve the understanding of structure-function in corrosion science, particularly when combined with complementary, co-located structural characterisation (EBSD, STEM etc.) and computational analysis (DFT)

    Surface microstructural controls on electrochemical hydrogen absorption at polycrystalline palladium

    Get PDF
    The ease by which hydrogen is absorbed into a metal can be either advantageous or deleterious, depending on the material and application in question. For instance, in metals such as palladium (Pd), rapid absorption kinetics are seen as a beneficial property for hydrogen purification and storage applications, whereas the contrary is true for structural metals such as steel, which are susceptible to mechanical degradation in a process known as hydrogen embrittlement. It follows that understanding how the microstructure of metals (i.e., grains and grain boundaries) influences adsorption and absorption kinetics would be extremely powerful to rationally design materials (e.g., alloys) with either a high affinity for hydrogen or resistance to hydrogen embrittlement. To this end, scanning electrochemical cell microscopy (SECCM) is deployed herein to study surface structure-dependent electrochemical hydrogen absorption across the surface of flame annealed polycrystalline Pd in aqueous sulfuric acid (considered the model system for the study of hydrogen absorption). Correlating spatially-resolved cyclic voltammetric data from SECCM with co-located structural information from electron backscatter diffraction (EBSD) reveals a clear relationship between the crystal orientation and the rate of hydrogen adsorption-absorption. Grains that are closest to the low-index orientations [i.e., the {100}, {101}, and {111} facets, face-centered cubic (fcc) system] facilitate the lowest rates of hydrogen absorption, whereas grains of high-index orientation (e.g., {411}) promoted higher rates. Apparently enhanced kinetics are also seen at grain boundaries, which is thought to arise from physical deformation of the Pd surface adjacent to the boundary, resulting from the flame annealing and quenching process. As voltammetric measurements are made across a wide potential range, these studies also reveal palladium oxide formation and stripping to be surface structure-dependent processes, and further highlight the power of combined SECCM-EBSD for structure-activity measurements in electrochemical science

    Prognostic model to predict postoperative acute kidney injury in patients undergoing major gastrointestinal surgery based on a national prospective observational cohort study.

    Get PDF
    Background: Acute illness, existing co-morbidities and surgical stress response can all contribute to postoperative acute kidney injury (AKI) in patients undergoing major gastrointestinal surgery. The aim of this study was prospectively to develop a pragmatic prognostic model to stratify patients according to risk of developing AKI after major gastrointestinal surgery. Methods: This prospective multicentre cohort study included consecutive adults undergoing elective or emergency gastrointestinal resection, liver resection or stoma reversal in 2-week blocks over a continuous 3-month period. The primary outcome was the rate of AKI within 7 days of surgery. Bootstrap stability was used to select clinically plausible risk factors into the model. Internal model validation was carried out by bootstrap validation. Results: A total of 4544 patients were included across 173 centres in the UK and Ireland. The overall rate of AKI was 14·2 per cent (646 of 4544) and the 30-day mortality rate was 1·8 per cent (84 of 4544). Stage 1 AKI was significantly associated with 30-day mortality (unadjusted odds ratio 7·61, 95 per cent c.i. 4·49 to 12·90; P < 0·001), with increasing odds of death with each AKI stage. Six variables were selected for inclusion in the prognostic model: age, sex, ASA grade, preoperative estimated glomerular filtration rate, planned open surgery and preoperative use of either an angiotensin-converting enzyme inhibitor or an angiotensin receptor blocker. Internal validation demonstrated good model discrimination (c-statistic 0·65). Discussion: Following major gastrointestinal surgery, AKI occurred in one in seven patients. This preoperative prognostic model identified patients at high risk of postoperative AKI. Validation in an independent data set is required to ensure generalizability

    Cointegration analysis with state space models

    Get PDF
    Abstract: This paper presents and exemplifies results developed for cointegration analysis with state space models by Bauer and Wagner in a series of papers. Unit root processes, cointegration and polynomial cointegration are defined. Based upon these definitions the major part of the paper discusses how state space models, which are equivalent to VARMA models, can be fruitfully employed for cointegration analysis. By means of detailing the cases most relevant for empirical applications, the I(1), MFI(1) and I(2) cases, a canonical representation is developed and thereafter some available statistical results are briefly mentioned.
    corecore