228 research outputs found

    創価教育と家族・地域・世界

    Get PDF

    山崎純一先生を讃う

    Get PDF

    Bone Regeneration in Artificial Jaw Cleft by Use of Carbonated Hydroxyapatite Particles and Mesenchymal Stem Cells Derived from Iliac Bone

    Get PDF
    Objectives of the Study. Cleft lip and palate (CLP) is a prevalent congenital anomaly in the orofacial region. Autogenous iliac bone grafting has been frequently employed for the closure of bone defects at the jaw cleft site. Since the related surgical procedures are quite invasive for patients, it is of great importance to develop a new less invasive technique. The aim of this study was to examine bone regeneration with mesenchyme stem cells (MSCs) for the treatment of bone defect in artificially created jaw cleft in dogs. Materials and Methods. A bone defect was prepared bilaterally in the upper incisor regions of beagle dogs. MSCs derived from iliac bone marrow were cultured and transplanted with carbonated hydroxyapatite (CAP) particles into the bone defect area. The bone regeneration was evaluated by standardized occlusal X-ray examination and histological observation. Results. Six months after the transplantation, perfect closure of the jaw cleft was achieved on the experimental side. The X-ray and histological examination revealed that the regenerated bone on the experimental side was almost equivalent to the original bone adjoining the jaw cleft. Conclusion. It was suggested that the application of MSCs with CAP particles can become a new treatment modality for bone regeneration for CLP patients

    Genetic diversity and structure in the Sado captive population of the Japanese crested ibis.

    Get PDF
    The Japanese crested ibis Nipponia nippon is a critically threatened bird. We assessed genetic diversity and structure in the Sado captive population of the Japanese crested ibis based on 24 and 50 microsatellite markers developed respectively for the same and related species. Of a total of 74 loci, 19 showed polymorphisms in the five founder birds of the population, and therefore were useful for the analysis of genetic diversity and structure. Genetic diversity measures, A, ne, He, Hoand PIC, obtained by genotyping of the 138 descendants were similar to those of other species with population bottlenecks, and thus considerably low. The low level of genetic diversity resulting from such bottlenecks was consistent with the results of lower genetic diversity measures for the Sado captive relative to the Chinese population that is the source population for the Sado group as determined using previously reported data and heterozygosity excess by Hardy-Weinberg equilibrium tests. Further, individual clustering based on the allele-sharing distance and Bayesian model-based clustering revealed that the founder genomes were equally at population in total, and with various admixture patterns at individual levels inherited by the descendants. The clustering results, together with the result of inheritance of all alleles of the microsatellites from the founders to descendants, suggest that planned mating in captive-breeding programs for the population has succeeded in maintaining genetic diversity and minimizing kinship. In addition, the Bayesian model-based clustering assumed two different components of genomes in the Sado captive Japanese crested ibis, supporting a considerably low level of genetic diversity

    Characterization of the Enhancing Effect of Protamine on the Proliferative Activity of Hepatocyte Growth Factor in Rat Hepatocytes

    Get PDF
    金沢大学医薬保健研究域薬学系Purpose: The aim of the present study was to characterize the mechanism of the stimulatory effect of protamine on HGF activity. Methods: The enhancing effects of protamine on the proliferative activity of HGF were investigated in vivo, in primary cultured rat hepatocytes, and in perfused rat liver. Results: In α-naphthylisothiocyanate-intoxicated rats, pretreatment with protamine increased HGF-induced autophosphorylation of the HGF receptor in liver. The maximum enhancing effect of protamine on HGF-induced DNA synthesis of hepatocytes required a 10 min-pretreatment period both in vivo and in vitro, and the stimulatory effect of protamine was not observed when it was administered simultaneously with HGF. Preperfusion of the liver with protamine for 10 min decreased the non-saturable portion of hepatic clearance for 125I-HGF, which is mainly mediated by cell-surface heparan-sulfate proteoglycan (HSPG). Inhibition of HGF binding to heparin by protamine was confirmed using heparin-coated sepharose. This inhibition also required 10 min of pretreatment, for protamine to bind heparin. Conclusion: The enhancing effect of protamine on the mitogenic activity of HGF on hepatocytes requires pretreatment with protamine for a short period presumably required for its binding to cell-surface heparin, implying possible regulation of c-met autophosphorylation by HSPG. © 2008 Springer Science+Business Media, LLC

    Quantum Monte Carlo study of the pairing symmetry competition in the Hubbard model

    Full text link
    To shed light into the pairing mechanism of possible spin-triplet superconductors (TMTSF)2_2X and Sr2_2RuO4_4, we study the competition among various spin singlet and triplet pairing channels in the Hubbard model by calculating the pairing interaction vertex using the ground state quantum Monte Carlo technique. We model (TMTSF)2_2X by a quarter-filled quasi-one dimensional (quasi-1D) Hubbard model,and the γ\gamma band of Sr2_2RuO4_4 by a two dimensional (2D) Hubbard model with a band filling of 4/3\sim 4/3. For the quasi-1D system, we find that triplet ff-wave pairing not only dominates over triplet p-wave in agreement with the spin fluctuation theory, but also looks unexpectedly competitive against d-wave. For the 2D system, although the results suggest presence of attractive interaction in the triplet pairing channels, the d-wave pairing interaction is found to be larger than those of the triplet channels

    Activator protein-1 responsive to the group II metabotropic glutamate receptor subtype in association with intracellular calcium in cultured rat cortical neurons

    Get PDF
    金沢大学大学院自然科学研究科分子作用学Activation of ionotropic glutamate (Glu) receptors, such as N-methyl-d-aspartate receptors, is shown to modulate the gene transcription mediated by the transcription factor activator protein-1 (AP1) composed of Fos and Jun family proteins in the brain, while little attention has been paid to the modulation of AP1 expression by metabotropic Glu receptors (mGluRs). In cultured rat cortical neurons, where constitutive expression was seen with all groups I, II and III mGluR subtypes, a significant and selective increase was seen in the DNA binding activity of AP1 120 min after the brief exposure to the group II mGluR agonist (2S,2′R,3′R)-2-(2′,3′-dicarboxycyclopropyl)glycine (DCG-IV) for 5 min. In cultured rat cortical astrocytes, by contrast, a significant increase was induced by a group I mGluR agonist, but not by either a group II or III mGluR agonist. The increase by DCG-IV was significantly prevented by a group II mGluR antagonist as well as by either an intracellular Ca2+ chelator or a voltage-sensitive Ca2+ channel blocker, but not by an intracellular Ca2+ store inhibitor. Moreover, DCG-IV significantly prevented the increase of cAMP formation by forskolin in cultured neurons. Western blot analysis revealed differential expression profiles of Fos family members in neurons briefly exposed to DCG-IV and NMDA. Prior or simultaneous exposure to DCG-IV led to significant protection against neuronal cell death by NMDA. These results suggest that activation of the group II mGluR subtype would modulate the gene expression mediated by AP1 through increased intracellular Ca2+ levels in cultured rat cortical neurons. © 2007

    Genome-Scale CRISPR/Cas9 Screening Reveals Squalene Epoxidase as a Susceptibility Factor for Cytotoxicity of Malformin A1

    Get PDF
    Malformin A1 (MA1) is a fungus-produced cyclic pentapeptide. MA1 exhibits teratogenicity to plants, fibrinolysis-enhancing activity, and cytotoxicity to mammalian cells. To clarify the cytotoxic mechanism of MA1, we screened for the genes involved in the cytotoxicity of MA1 in monocytoid U937 cells by using a CRISPR/Cas9-based genome-wide knockout library. Screening was performed by positive selection for cells that were resistant to MA1 treatment, and single guide RNAs (sgRNAs) integrated into MA1-resistant cells were analyzed by high-throughput sequencing. As a result of the evaluation of sgRNAs that were enriched in MA1-resistant cells, SQLE, which encodes squalene epoxidase, was identified as a candidate gene. SQLE-depleted U937 cells were viable in the presence of MA1, and squalene epoxidase inhibitor conferred MA1 resistance to wild-type cells. These results indicate that squalene epoxidase is implicated in the cytotoxicity of MA1. This finding represents a new insight into applications of MA1 for treating ischemic diseases

    Cadmium-coordinated supramolecule suppresses tumor growth of T-cell leukemia in mice

    Get PDF
    Cadmium is a toxic pollutant with occupational and environmental significance, due to its diverse toxic effects. Supramolecules that conjugate and decontaminate toxic metals have potential for use in treatment of cadmium intoxication. In addition, metal-coordinating ability has been postulated to contribute to the cytotoxic effects of anti-tumor agents such as cisplatin or bleomycin. Thiacalixarenes, cyclic oligomers of p-alkylphenol bridged by sulfur atoms, are supramolecules known to have potent coordinating ability to metal ions. In this study, we show that cadmium-coordinated thiacalix[4]arene tetrasulfate (TC4ATS-Cd) exhibits an anti-proliferative effect against T-cell leukemia cells. Cadmium exhibited cytotoxicity with IC50 values ranging from 36 to 129M against epithelia-derived cancer cell lines, while TC4ATS-Cd elicited no significant cytotoxicity (IC50>947M). However, a number of T-cell leukemia cell lines exhibited marked sensitivity to TC4ATS-Cd. In Jurkat cells, toxicity of TC4ATS-Cd occurred with an IC50 of 6.9M, which is comparable to that of 6.5M observed for cadmium alone. TC4ATS-Cd induced apoptotic cell death through activation of caspase-3 in Jurkat cells. In a xenograft model, TC4ATS-Cd (13mg/kg) treatment significantly suppressed the tumor growth of Jurkat cells in mice. In addition, TC4ATS-Cd-treated mice exhibited significantly less cadmium accumulation in liver and kidney compared to equimolar cadmium-treated mice. These results suggest that cadmium-coordinated supramolecules may have therapeutic potential for treatment of T-cell leukemia
    corecore