83 research outputs found

    Two Regulators of Vibrio parahaemolyticus Play Important Roles in Enterotoxicity by Controlling the Expression of Genes in the Vp-PAI Region

    Get PDF
    Vibrio parahaemolyticus is an important pathogen causing food-borne disease worldwide. An 80-kb pathogenicity island (Vp-PAI), which contains two tdh (thermostable direct hemolysin) genes and a set of genes for the type III secretion system (T3SS2), is closely related to the pathogenicity of this bacterium. However, the regulatory mechanisms of Vp-PAI's gene expression are poorly understood. Here we report that two novel ToxR-like transcriptional regulatory proteins (VtrA and VtrB) regulate the expression of the genes encoded within the Vp-PAI region, including those for TDH and T3SS2-related proteins. Expression of vtrB was under control of the VtrA, as vector-expressed vtrB was able to recover a functional protein secretory capacity for T3SS2, independent of VtrA. Moreover, these regulatory proteins were essential for T3SS2-dependent biological activities, such as in vitro cytotoxicity and in vivo enterotoxicity. Enterotoxic activities of vtrA and/or vtrB deletion strains derived from the wild-type strain were almost absent, showing fluid accumulation similar to non-infected control. Whole genome transcriptional profiling of vtrA or vtrB deletion strains revealed that the expression levels of over 60 genes were downregulated significantly in these deletion mutant strains and that such genes were almost exclusively located in the Vp-PAI region. These results strongly suggest that VtrA and VtrB are master regulators for virulence gene expression in the Vp-PAI and play critical roles in the pathogenicity of this bacterium

    In vivo tracking transplanted cardiomyocytes derived from human induced pluripotent stem cells using nuclear medicine imaging

    Get PDF
    Introduction: Transplantation of human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) is a promising treatment for heart failure. Information on long-term cell engraftment after transplantation is clinically important. However, clinically applicable evaluation methods have not yet been established. Methods: In this study, to noninvasively assess transplanted cell engraftment, human SLC5A5, which encodes a sodium/iodide symporter (NIS) that transports radioactive tracers such as 125I, 18F-tetrafluoroborate (TFB), and 99mTc-pertechnetate (99mTcO4−), was transduced into human induced pluripotent stem cells (iPSCs), and nuclear medicine imaging was used to track engrafted human iPSC-CMs. Results: To evaluate the pluripotency of NIS-expressing human iPSCs, they were subcutaneously transplanted into immunodeficient rats. Teratomas were detected by 99mTcO4− single photon emission computed tomography (SPECT/CT) imaging. NIS expression and the uptake ability of 125I were maintained in purified human iPSC-CMs. NIS-expressing human iPSC-CMs transplanted into immunodeficient rats could be detected over time using 99mTcO4− SPECT/CT imaging. Unexpectedly, NIS expression affected cell proliferation of human iPSCs and iPSC-derived cells. Discussion: Such functionally designed iPSC-CMs have potential clinical applications as a noninvasive method of grafted cell evaluation, but further studies are needed to determine the effects of NIS transduction on cellular characteristics and functions

    Videofluorographic Evaluation of Mastication and Swallowing of Japanese Udon Noodles and White Rice

    Get PDF
    A videofluorographic (VF) swallowing study was performed on 22 healthy volunteers to observe the complete mastication and swallowing phases for Japanese udon noodles and white rice. The hardness, stickiness, and cohesiveness of food samples were measured using a food texture analyzing system. VF images were acquired using a versatile fluoroscopic unit and barium sulfate was used as a contrast medium. Udon noodles had a harder and smoother food texture than white rice. Fewer chewing movements and more stage 2 transport were seen during the consumption of udon noodles than for white rice

    Influence of genetic factors on the ephedrine alkaloid composition ratio of Ephedra plants

    Get PDF
    We investigated the ephedrine alkaloid [(-)-ephedrine and (+)-pseudoephedrine] composition ratio of a crude Chinese herbal drug described in the Japanese Pharmacopoeia \u27Ephedra herb (Chinese name: Mahuang)\u27. There were marked changes in the alkaloid composition ratio of wild plants in areas where both male and female clusters coexisted. However, in genetically homogeneous areas with the growth of male or female clusters alone, all of the coefficients of the regression lines were positive, but each gradient varied. This suggests that the alkaloid composition ratio has a clear tendency in each individual. Based on this, we cultivated individuals for vegetative propagation, and evaluated the alkaloid content ratio. Those propagated by separating the roots showed a specific tendency regardless of the cultivation area (Wakayama, Tanegashima). Those propagated by separating the herbaceous stem showed a specific tendency regardless of the soil or harvest time. In addition, we surveyed the (-)-ephedrine content ratio of 3- to 6-year-old strains. There was a high positive correlation coefficient between the previous and subsequent years. These findings suggest that the ephedrine alkaloid composition ratio of Ephedra herb depends on genetic factors, but not on environmental factors or the growth period

    Bile Acid-Induced Virulence Gene Expression of Vibrio parahaemolyticus Reveals a Novel Therapeutic Potential for Bile Acid Sequestrants

    Get PDF
    Vibrio parahaemolyticus, a bacterial pathogen, causes human gastroenteritis. A type III secretion system (T3SS2) encoded in pathogenicity island (Vp-PAI) is the main contributor to enterotoxicity and expression of Vp-PAI encoded genes is regulated by two transcriptional regulators, VtrA and VtrB. However, a host-derived inducer for the Vp-PAI genes has not been identified. Here, we demonstrate that bile induces production of T3SS2-related proteins under osmotic conditions equivalent to those in the intestinal lumen. We also show that bile induces vtrA-mediated vtrB transcription. Transcriptome analysis of bile-responsive genes revealed that bile strongly induces expression of Vp-PAI genes in a vtrA-dependent manner. The inducing activity of bile was diminished by treatment with bile acid sequestrant cholestyramine. Finally, we demonstrate an in vivo protective effect of cholestyramine on enterotoxicity and show that similar protection is observed in infection with a different type of V. parahaemolyticus or with non-O1/non-O139 V. cholerae strains of vibrios carrying the same kind of T3SS. In summary, these results provide an insight into how bacteria, through the ingenious action of Vp-PAI genes, can take advantage of an otherwise hostile host environment. The results also reveal a new therapeutic potential for widely used bile acid sequestrants in enteric bacterial infections

    Advanced flavin catalysts elaborated with polymers

    Get PDF
    A variety of biological redox reactions are mediated by flavoenzymes due to the unique redox activity of isoalloxazine ring systems, which are found in flavin cofactors. In the field of synthetic organic chemistry, the term “flavin” is generally used for not only isoalloxazines but also related molecules including their isomers and some analogues, and those having catalytic activity are called flavin catalyst. Flavin catalysts are typically metal-free, and their catalytic activity can be readily accessed using mild terminal oxidants such as H2O2 and O2; therefore, redox reactions with these compounds have great promise as alternatives to reactions with conventional metal catalysts for the sustainable production of important chemicals. We recently became interested in using polymers for the development of flavin catalysts, especially to improve their practicality and advance the field of catalysis. Here, we summarize our recent research on such flavin-polymer collaborations including the development of facile preparation methods for flavin catalysts using polymers, readily reusable polymer-supported flavin catalysts, and flavin-peptide-polymer hybrids that can catalyze the first flavoenzyme-mimetic aerobic oxygenation reactions
    corecore