3 research outputs found

    Discovery of a Novel Piperidine-Based Inhibitor of Cholesteryl Ester Transfer Protein (CETP) That Retains Activity in Hypertriglyceridemic Plasma

    Full text link
    Herein we describe the discovery and characterization of a novel, piperidine-based inhibitor of cholesteryl ester transfer protein (CETP) with a core structure distinct from other reported CETP inhibitors. A versatile synthesis starting from 4-methoxypyridine enabled an efficient exploration of the SAR, giving a lead molecule with potent CETP inhibition in human plasma. The subsequent optimization focused on improvement of pharmacokinetics and mitigation of off-target liabilities, such as CYP inhibition, whose improvement correlated with increased lipophilic efficiency. The effort led to the identification of an achiral, carboxylic acid-bearing compound <b>16</b> (TAP311) with excellent pharmacokinetics in rats and robust efficacy in hamsters. Compared to anacetrapib, the compound showed substantially reduced lipophilicity, had only modest distribution into adipose tissue, and retained potency in hypertriglyceridemic plasma in vitro and in vivo. Furthermore, in contrast to torcetrapib, the compound did not increase aldosterone secretion in human adrenocortical carcinoma cells nor in chronically cannulated rats. On the basis of its preclinical efficacy and safety profile, the compound was advanced into clinical trials

    Optimization of Allosteric With-No-Lysine (WNK) Kinase Inhibitors and Efficacy in Rodent Hypertension Models

    Full text link
    The observed structure–activity relationship of three distinct ATP noncompetitive With-No-Lysine (WNK) kinase inhibitor series, together with a crystal structure of a previously disclosed allosteric inhibitor bound to WNK1, led to an overlay hypothesis defining core and side-chain relationships across the different series. This in turn enabled an efficient optimization through scaffold morphing, resulting in compounds with a good balance of selectivity, cellular potency, and pharmacokinetic profile, which were suitable for <i>in vivo</i> proof-of-concept studies. When dosed orally, the optimized compound reduced blood pressure in mice overexpressing human WNK1, and induced diuresis, natriuresis and kaliuresis in spontaneously hypertensive rats (SHR), confirming that this mechanism of inhibition of WNK kinase activity is effective at regulating cardiovascular homeostasis

    Optimization of Allosteric With-No-Lysine (WNK) Kinase Inhibitors and Efficacy in Rodent Hypertension Models

    Full text link
    The observed structure–activity relationship of three distinct ATP noncompetitive With-No-Lysine (WNK) kinase inhibitor series, together with a crystal structure of a previously disclosed allosteric inhibitor bound to WNK1, led to an overlay hypothesis defining core and side-chain relationships across the different series. This in turn enabled an efficient optimization through scaffold morphing, resulting in compounds with a good balance of selectivity, cellular potency, and pharmacokinetic profile, which were suitable for <i>in vivo</i> proof-of-concept studies. When dosed orally, the optimized compound reduced blood pressure in mice overexpressing human WNK1, and induced diuresis, natriuresis and kaliuresis in spontaneously hypertensive rats (SHR), confirming that this mechanism of inhibition of WNK kinase activity is effective at regulating cardiovascular homeostasis
    corecore