8 research outputs found
柿タンニンは新型コロナウイルスに対する抗ウイルス効果を持ち、シリアンハムスターモデルにおける新型コロナウイルス感染症の重症度および感染伝播を抑制する
Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly spread across the world. Inactivating the virus in saliva and the oral cavity represents a reasonable approach to prevent human-to-human transmission because the virus is easily transmitted through oral routes by dispersed saliva. Persimmon-derived tannin is a condensed type of tannin that has strong antioxidant and antimicrobial activity. In this study, we investigated the antiviral effects of persimmon-derived tannin against SARS-CoV-2 in both in vitro and in vivo models. We found that persimmon-derived tannin suppressed SARS-CoV-2 titers measured by plaque assay in vitro in a dose- and time-dependent manner. We then created a Syrian hamster model by inoculating SARS-CoV-2 into hamsters' mouths. Oral administration of persimmon-derived tannin dissolved in carboxymethyl cellulose before virus inoculation dramatically reduced the severity of pneumonia with lower virus titers compared with a control group inoculated with carboxymethyl cellulose alone. In addition, pre-administration of tannin to uninfected hamsters reduced hamster-to-hamster transmission of SARS-CoV-2 from a cohoused, infected donor cage mate. These data suggest that oral administration of persimmon-derived tannin may help reduce the severity of SARS-CoV-2 infection and transmission of the virus.博士(医学)・甲第817号・令和4年3月15日© 2021. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/
Antiviral Effect of Candies Containing Persimmon-Derived Tannin against SARS-CoV-2 Delta Strain
Inactivation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the mouth has the potential to reduce the spread of coronavirus disease 2019 (COVID-19), due to the virus being readily transmitted by dispersed saliva. Persimmon-derived tannin has strong antioxidant and antimicrobial activity owing to its strong adhesion to proteins, and it also exhibited antiviral effects against non-variant and Alpha-variant SARS-CoV-2 in our previous study. In this study, we first demonstrated the antiviral effects of persimmon-derived tannin against the Delta variant of SARS-CoV-2 in vitro via the plaque assay method. We then examined the effects of candy containing persimmon-derived tannin. Remarkably, the saliva samples provided by healthy volunteers while they were eating tannin-containing candy showed that the virus titers of the SARS-CoV-2 Delta variant were suppressed. In addition, we found that the SARS-CoV-2 viral load in saliva from patients with COVID-19 collected immediately after they had eaten the tannin-containing candy was below the level of detection via PCR for SARS-CoV-2. These data suggest that adding persimmon-derived tannin to candy and holding such candy in the mouth is an effective method for inactivating SARS-CoV-2 in saliva, and the application of this approach shows potential for inhibiting the transmission of COVID-19
Translational Control of Sox9 RNA by mTORC1 Contributes to Skeletogenesis
Summary: The mechanistic/mammalian target of rapamycin complex 1 (mTORC1) regulates cellular function in various cell types. Although the role of mTORC1 in skeletogenesis has been investigated previously, here we show a critical role of mTORC1/4E-BPs/SOX9 axis in regulating skeletogenesis through its expression in undifferentiated mesenchymal cells. Inactivation of Raptor, a component of mTORC1, in limb buds before mesenchymal condensations resulted in a marked loss of both cartilage and bone. Mechanistically, we demonstrated that mTORC1 selectively controls the RNA translation of Sox9, which harbors a 5′ terminal oligopyrimidine tract motif, via inhibition of the 4E-BPs. Indeed, introduction of Sox9 or a knockdown of 4E-BP1/2 in undifferentiated mesenchymal cells markedly rescued the deficiency of the condensation observed in Raptor-deficient mice. Furthermore, introduction of the Sox9 transgene rescued phenotypes of deficient skeletal growth in Raptor-deficient mice. These findings highlight a critical role of mTORC1 in mammalian skeletogenesis, at least in part, through translational control of Sox9 RNA. : Iezaki et al. demonstrated that the mTORC1/SOX9 axis has essential roles in skeletal development through its expression in undifferentiated mesenchymal cells in vivo. Moreover, they identified that mTORC1/4E-BPs cascade regulates the translation of Sox9 RNA in undifferentiated mesenchymal cells, highlighting a critical role of mTORC1/4E-BPs/SOX9 axis in regulating mammalian skeletogenesis. Keywords: mTORC1, translation, Sox9, undifferentiated mesenchymal cell