5 research outputs found

    Mesoscopic theory for inhomogeneous mixtures

    Full text link
    Mesoscopic density functional theory for inhomogeneous mixtures of sperical particles is developed in terms of mesoscopic volume fractions by a systematic coarse-graining procedure starting form microscopic theory. Approximate expressions for the correlation functions and for the grand potential are obtained for weak ordering on mesoscopic length scales. Stability analysis of the disordered phase is performed in mean-field approximation (MF) and beyond. MF shows existence of either a spinodal or a \lambda-surface on the volume-fractions - temperature phase diagram. Separation into homogeneous phases or formation of inhomogeneous distribution of particles occurs on the low-temperature side of the former or the latter surface respectively, depending on both the interaction potentials and the size ratios between particles of different species. Beyond MF the spinodal surface is shifted, and the instability at the \lambda-surface is suppressed by fluctuations. We interpret the \lambda-surface as a borderline between homogeneous and inhomogeneous (containing clusters or other aggregates) structure of the disordered phase. For two-component systems explicit expressions for the MF spinodal and \lambda-surfaces are derived. Examples of interaction potentials of simple form are analyzed in some detail, in order to identify conditions leading to inhomogeneous structures.Comment: 6 figure

    Non-Perturbative Renormalization Group for Simple Fluids

    Full text link
    We present a new non perturbative renormalization group for classical simple fluids. The theory is built in the Grand Canonical ensemble and in the framework of two equivalent scalar field theories as well. The exact mapping between the three renormalization flows is established rigorously. In the Grand Canonical ensemble the theory may be seen as an extension of the Hierarchical Reference Theory (L. Reatto and A. Parola, \textit{Adv. Phys.}, \textbf{44}, 211 (1995)) but however does not suffer from its shortcomings at subcritical temperatures. In the framework of a new canonical field theory of liquid state developed in that aim our construction identifies with the effective average action approach developed recently (J. Berges, N. Tetradis, and C. Wetterich, \textit{Phys. Rep.}, \textbf{363} (2002))
    corecore